Symplectic structures on nilmanifolds: an obstruction for its existence
- Autores
- del Barco, Viviana Jorgelina
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we introduce an obstruction for the existence of symplectic structures on nilpotent Lie algebras. Indeed, a necessary condition is presented in terms of the cohomology of the Lie algebra. Using this obstruction we obtain both positive and negative results on the existence of symplectic structures on a large family of nilpotent Lie algebras. Namely the family of nilradicals of minimal parabolic subalgebras associated to the real split Lie algebra of classical complex simple Lie algebras.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Symplectic Structures
Nilpotent Lie Algebras
Lie Algebra Cohomology
Minimal Parabolic Subalgebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30806
Ver los metadatos del registro completo
| id |
CONICETDig_e8aef8c37f920f71cb256f3cbdee44ab |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30806 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Symplectic structures on nilmanifolds: an obstruction for its existencedel Barco, Viviana JorgelinaSymplectic StructuresNilpotent Lie AlgebrasLie Algebra CohomologyMinimal Parabolic Subalgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we introduce an obstruction for the existence of symplectic structures on nilpotent Lie algebras. Indeed, a necessary condition is presented in terms of the cohomology of the Lie algebra. Using this obstruction we obtain both positive and negative results on the existence of symplectic structures on a large family of nilpotent Lie algebras. Namely the family of nilradicals of minimal parabolic subalgebras associated to the real split Lie algebra of classical complex simple Lie algebras.Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; ArgentinaHeldermann Verlag2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/vnd.rarapplication/pdfhttp://hdl.handle.net/11336/30806Symplectic structures on nilmanifolds: an obstruction for its existence; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 8-2014; 889-9080949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1210.6296info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT24/JLT243/jlt24039.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:35:21Zoai:ri.conicet.gov.ar:11336/30806instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:35:21.986CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| title |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| spellingShingle |
Symplectic structures on nilmanifolds: an obstruction for its existence del Barco, Viviana Jorgelina Symplectic Structures Nilpotent Lie Algebras Lie Algebra Cohomology Minimal Parabolic Subalgebras |
| title_short |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| title_full |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| title_fullStr |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| title_full_unstemmed |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| title_sort |
Symplectic structures on nilmanifolds: an obstruction for its existence |
| dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina |
| author |
del Barco, Viviana Jorgelina |
| author_facet |
del Barco, Viviana Jorgelina |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Symplectic Structures Nilpotent Lie Algebras Lie Algebra Cohomology Minimal Parabolic Subalgebras |
| topic |
Symplectic Structures Nilpotent Lie Algebras Lie Algebra Cohomology Minimal Parabolic Subalgebras |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work we introduce an obstruction for the existence of symplectic structures on nilpotent Lie algebras. Indeed, a necessary condition is presented in terms of the cohomology of the Lie algebra. Using this obstruction we obtain both positive and negative results on the existence of symplectic structures on a large family of nilpotent Lie algebras. Namely the family of nilradicals of minimal parabolic subalgebras associated to the real split Lie algebra of classical complex simple Lie algebras. Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina |
| description |
In this work we introduce an obstruction for the existence of symplectic structures on nilpotent Lie algebras. Indeed, a necessary condition is presented in terms of the cohomology of the Lie algebra. Using this obstruction we obtain both positive and negative results on the existence of symplectic structures on a large family of nilpotent Lie algebras. Namely the family of nilradicals of minimal parabolic subalgebras associated to the real split Lie algebra of classical complex simple Lie algebras. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30806 Symplectic structures on nilmanifolds: an obstruction for its existence; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 8-2014; 889-908 0949-5932 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/30806 |
| identifier_str_mv |
Symplectic structures on nilmanifolds: an obstruction for its existence; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 8-2014; 889-908 0949-5932 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1210.6296 info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT24/JLT243/jlt24039.htm |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/vnd.rar application/pdf |
| dc.publisher.none.fl_str_mv |
Heldermann Verlag |
| publisher.none.fl_str_mv |
Heldermann Verlag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597186612297728 |
| score |
13.107121 |