Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian
- Autores
- Kaufmann, Uriel; Medri, Ivan Vladimir
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0.
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Elliptic One-Dimensional Problems
Indefinite Nonlinearities
P-Laplacian
Strictly Positive Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33957
Ver los metadatos del registro completo
| id |
CONICETDig_717412c99cc227c4ca66e5ba1628746f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33957 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacianKaufmann, UrielMedri, Ivan VladimirElliptic One-Dimensional ProblemsIndefinite NonlinearitiesP-LaplacianStrictly Positive Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0.Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAustralian Mathematics Publ Assoc Inc2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33957Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-2510004-9727CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972713000725info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/strictly-positive-solutions-for-onedimensional-nonlinear-problems-involving-the-p-laplacian/107C6DDBA9B4846C1F2CA8C757D4EDC4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:50:47Zoai:ri.conicet.gov.ar:11336/33957instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:50:47.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| title |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| spellingShingle |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian Kaufmann, Uriel Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
| title_short |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| title_full |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| title_fullStr |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| title_full_unstemmed |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| title_sort |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
| dc.creator.none.fl_str_mv |
Kaufmann, Uriel Medri, Ivan Vladimir |
| author |
Kaufmann, Uriel |
| author_facet |
Kaufmann, Uriel Medri, Ivan Vladimir |
| author_role |
author |
| author2 |
Medri, Ivan Vladimir |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
| topic |
Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0. Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
| description |
Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33957 Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-251 0004-9727 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33957 |
| identifier_str_mv |
Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-251 0004-9727 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972713000725 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/strictly-positive-solutions-for-onedimensional-nonlinear-problems-involving-the-p-laplacian/107C6DDBA9B4846C1F2CA8C757D4EDC4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
| publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598121415704576 |
| score |
12.976206 |