Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian
- Autores
- Kaufmann, Uriel; Medri, Ivan Vladimir
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0.
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Elliptic One-Dimensional Problems
Indefinite Nonlinearities
P-Laplacian
Strictly Positive Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33957
Ver los metadatos del registro completo
id |
CONICETDig_717412c99cc227c4ca66e5ba1628746f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33957 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacianKaufmann, UrielMedri, Ivan VladimirElliptic One-Dimensional ProblemsIndefinite NonlinearitiesP-LaplacianStrictly Positive Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0.Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAustralian Mathematics Publ Assoc Inc2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33957Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-2510004-9727CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972713000725info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/strictly-positive-solutions-for-onedimensional-nonlinear-problems-involving-the-p-laplacian/107C6DDBA9B4846C1F2CA8C757D4EDC4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:46:02Zoai:ri.conicet.gov.ar:11336/33957instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:46:03.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
title |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
spellingShingle |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian Kaufmann, Uriel Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
title_short |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
title_full |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
title_fullStr |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
title_full_unstemmed |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
title_sort |
Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian |
dc.creator.none.fl_str_mv |
Kaufmann, Uriel Medri, Ivan Vladimir |
author |
Kaufmann, Uriel |
author_facet |
Kaufmann, Uriel Medri, Ivan Vladimir |
author_role |
author |
author2 |
Medri, Ivan Vladimir |
author2_role |
author |
dc.subject.none.fl_str_mv |
Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
topic |
Elliptic One-Dimensional Problems Indefinite Nonlinearities P-Laplacian Strictly Positive Solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0. Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Let Ω be a bounded open interval, and let p>1 and q∈(0,p−1). Let m∈Lp′(Ω) and 0≤c∈L∞(Ω). We study the existence of strictly positive solutions for elliptic problems of the form −(|u′|^p − 2u′)′+c(x)u^(p−1)=m(x)u^q in Ω, u=0 on ∂Ω. We mention that our results are new even in the case c≡0. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33957 Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-251 0004-9727 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33957 |
identifier_str_mv |
Kaufmann, Uriel; Medri, Ivan Vladimir; Strictly positive solutions for one-dimensional nonlinear problems involving the p-laplacian; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 89; 2; 4-2014; 243-251 0004-9727 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972713000725 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/strictly-positive-solutions-for-onedimensional-nonlinear-problems-involving-the-p-laplacian/107C6DDBA9B4846C1F2CA8C757D4EDC4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782160193716224 |
score |
12.982451 |