One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
- Autores
- Kaufmann, Uriel; Medri, Ivan Vladimir
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
INDEFINITE NONLINEARITIES
ONE-DIMENSIONAL SINGULAR PROBLEMS
P-LAPLACIAN
POSITIVE SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/179748
Ver los metadatos del registro completo
id |
CONICETDig_1e9a55827171e0b2e811dd94381fcb4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/179748 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in signKaufmann, UrielMedri, Ivan VladimirINDEFINITE NONLINEARITIESONE-DIMENSIONAL SINGULAR PROBLEMSP-LAPLACIANPOSITIVE SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaDe Gruyter2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179748Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-2592191-94962191-950XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2015-0116/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2015-0116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:12Zoai:ri.conicet.gov.ar:11336/179748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:12.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
title |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
spellingShingle |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign Kaufmann, Uriel INDEFINITE NONLINEARITIES ONE-DIMENSIONAL SINGULAR PROBLEMS P-LAPLACIAN POSITIVE SOLUTIONS |
title_short |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
title_full |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
title_fullStr |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
title_full_unstemmed |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
title_sort |
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign |
dc.creator.none.fl_str_mv |
Kaufmann, Uriel Medri, Ivan Vladimir |
author |
Kaufmann, Uriel |
author_facet |
Kaufmann, Uriel Medri, Ivan Vladimir |
author_role |
author |
author2 |
Medri, Ivan Vladimir |
author2_role |
author |
dc.subject.none.fl_str_mv |
INDEFINITE NONLINEARITIES ONE-DIMENSIONAL SINGULAR PROBLEMS P-LAPLACIAN POSITIVE SOLUTIONS |
topic |
INDEFINITE NONLINEARITIES ONE-DIMENSIONAL SINGULAR PROBLEMS P-LAPLACIAN POSITIVE SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities. Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/179748 Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-259 2191-9496 2191-950X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/179748 |
identifier_str_mv |
Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-259 2191-9496 2191-950X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2015-0116/html info:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2015-0116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614274297626624 |
score |
13.070432 |