One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign

Autores
Kaufmann, Uriel; Medri, Ivan Vladimir
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
INDEFINITE NONLINEARITIES
ONE-DIMENSIONAL SINGULAR PROBLEMS
P-LAPLACIAN
POSITIVE SOLUTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/179748

id CONICETDig_1e9a55827171e0b2e811dd94381fcb4c
oai_identifier_str oai:ri.conicet.gov.ar:11336/179748
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in signKaufmann, UrielMedri, Ivan VladimirINDEFINITE NONLINEARITIESONE-DIMENSIONAL SINGULAR PROBLEMSP-LAPLACIANPOSITIVE SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaDe Gruyter2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179748Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-2592191-94962191-950XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2015-0116/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2015-0116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:12Zoai:ri.conicet.gov.ar:11336/179748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:12.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
spellingShingle One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
Kaufmann, Uriel
INDEFINITE NONLINEARITIES
ONE-DIMENSIONAL SINGULAR PROBLEMS
P-LAPLACIAN
POSITIVE SOLUTIONS
title_short One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_full One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_fullStr One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_full_unstemmed One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
title_sort One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
dc.creator.none.fl_str_mv Kaufmann, Uriel
Medri, Ivan Vladimir
author Kaufmann, Uriel
author_facet Kaufmann, Uriel
Medri, Ivan Vladimir
author_role author
author2 Medri, Ivan Vladimir
author2_role author
dc.subject.none.fl_str_mv INDEFINITE NONLINEARITIES
ONE-DIMENSIONAL SINGULAR PROBLEMS
P-LAPLACIAN
POSITIVE SOLUTIONS
topic INDEFINITE NONLINEARITIES
ONE-DIMENSIONAL SINGULAR PROBLEMS
P-LAPLACIAN
POSITIVE SOLUTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Medri, Ivan Vladimir. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description Let Ω be a bounded open interval, let p > 1 and γ >, and let m : Ω → ℝ be a function that may change sign in Ω. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form - (|u′|p-2u′)′ = m(x) u-γ in Ω, u = 0 on ∂Ω. As a consequence we also derive existence results for other related nonlinearities.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/179748
Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-259
2191-9496
2191-950X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/179748
identifier_str_mv Kaufmann, Uriel; Medri, Ivan Vladimir; One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign; De Gruyter; Advances in Nonlinear Analysis; 5; 3; 8-2016; 251-259
2191-9496
2191-950X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/anona-2015-0116/html
info:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2015-0116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614274297626624
score 13.070432