Strictly positive solutions for one dimensional nonlinear elliptic problems
- Autores
- Kaufmann, Uriel; Medri, Iván Vladimir
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
We study the existence and nonexistence of strictly positive solutions for the elliptic problems -- in a bounded open interval, with zero boundary conditions, where -- is a strongly uniformly elliptic differential operator, --, and -- is a function that changes sign. We also characterize the set of values-- for which the problem admits a solution, and in addition an existence result for other nonlinearities is presented.
http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf
publishedVersion
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Matemática Pura - Fuente
- ISSN: 1072-669
- Materia
-
One dimensional problems
Indefinite nonliearities
Sub and supersolutions
Positive solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/20048
Ver los metadatos del registro completo
| id |
RDUUNC_66649585fe2f7b3397a9d8db4c497386 |
|---|---|
| oai_identifier_str |
oai:rdu.unc.edu.ar:11086/20048 |
| network_acronym_str |
RDUUNC |
| repository_id_str |
2572 |
| network_name_str |
Repositorio Digital Universitario (UNC) |
| spelling |
Strictly positive solutions for one dimensional nonlinear elliptic problemsKaufmann, UrielMedri, Iván VladimirOne dimensional problemsIndefinite nonliearitiesSub and supersolutionsPositive solutionsFil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.We study the existence and nonexistence of strictly positive solutions for the elliptic problems -- in a bounded open interval, with zero boundary conditions, where -- is a strongly uniformly elliptic differential operator, --, and -- is a function that changes sign. We also characterize the set of values-- for which the problem admits a solution, and in addition an existence result for other nonlinearities is presented.http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdfpublishedVersionFil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Matemática Pura2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfKaufmann, U. y Medri, I. (2014). Strictly positive solutions for one dimensional nonlinear elliptic problems. Electronic Journal of Differential Equations. 2014, 126, 1-13. http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdfhttp://hdl.handle.net/11086/20048https://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdftestISSN: 1072-669reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-10-30T11:20:41Zoai:rdu.unc.edu.ar:11086/20048Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-30 11:20:42.38Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
| dc.title.none.fl_str_mv |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| title |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| spellingShingle |
Strictly positive solutions for one dimensional nonlinear elliptic problems Kaufmann, Uriel One dimensional problems Indefinite nonliearities Sub and supersolutions Positive solutions |
| title_short |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| title_full |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| title_fullStr |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| title_full_unstemmed |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| title_sort |
Strictly positive solutions for one dimensional nonlinear elliptic problems |
| dc.creator.none.fl_str_mv |
Kaufmann, Uriel Medri, Iván Vladimir |
| author |
Kaufmann, Uriel |
| author_facet |
Kaufmann, Uriel Medri, Iván Vladimir |
| author_role |
author |
| author2 |
Medri, Iván Vladimir |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
One dimensional problems Indefinite nonliearities Sub and supersolutions Positive solutions |
| topic |
One dimensional problems Indefinite nonliearities Sub and supersolutions Positive solutions |
| dc.description.none.fl_txt_mv |
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. We study the existence and nonexistence of strictly positive solutions for the elliptic problems -- in a bounded open interval, with zero boundary conditions, where -- is a strongly uniformly elliptic differential operator, --, and -- is a function that changes sign. We also characterize the set of values-- for which the problem admits a solution, and in addition an existence result for other nonlinearities is presented. http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf publishedVersion Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Medri, Iván Vladimir. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Matemática Pura |
| description |
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
Kaufmann, U. y Medri, I. (2014). Strictly positive solutions for one dimensional nonlinear elliptic problems. Electronic Journal of Differential Equations. 2014, 126, 1-13. http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf http://hdl.handle.net/11086/20048 https://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf test |
| identifier_str_mv |
Kaufmann, U. y Medri, I. (2014). Strictly positive solutions for one dimensional nonlinear elliptic problems. Electronic Journal of Differential Equations. 2014, 126, 1-13. http://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf test |
| url |
http://hdl.handle.net/11086/20048 https://ejde.math.txstate.edu/Volumes/2014/126/kaufmann.pdf |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
ISSN: 1072-669 reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
| reponame_str |
Repositorio Digital Universitario (UNC) |
| collection |
Repositorio Digital Universitario (UNC) |
| instname_str |
Universidad Nacional de Córdoba |
| instacron_str |
UNC |
| institution |
UNC |
| repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
| repository.mail.fl_str_mv |
oca.unc@gmail.com |
| _version_ |
1847419222921052160 |
| score |
13.10058 |