Learning effective state-feedback controllers through efficient multilevel importance samplers
- Autores
- Menchón, Silvia Adriana; Kappen, Hilbert Johan
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics and quadratic control cost. Although importance sampling is used to improve numerical computations, the effective sample size may still be low or many samples could be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear stochastic control problems based on multilevel importance samplers. In particular, we focus on the question of how to compute effective importance samplers considering a multigrid scenario. We test our algorithm in finite horizon control problems based on Lorenz-96 model with chaotic and non-chaotic behaviour, showing, in all cases, that our multigrid implementation reduces the computational time and improves the effective sample size.
Fil: Menchón, Silvia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países Bajos
Fil: Kappen, Hilbert Johan. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países Bajos - Materia
-
IMPORTANCE SAMPLING
MULTILEVEL MONTE CARLO METHOD
PATH INTEGRAL CONTROL PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91650
Ver los metadatos del registro completo
id |
CONICETDig_be612f58b05b4d4f07b603454f383d55 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91650 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning effective state-feedback controllers through efficient multilevel importance samplersMenchón, Silvia AdrianaKappen, Hilbert JohanIMPORTANCE SAMPLINGMULTILEVEL MONTE CARLO METHODPATH INTEGRAL CONTROL PROBLEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics and quadratic control cost. Although importance sampling is used to improve numerical computations, the effective sample size may still be low or many samples could be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear stochastic control problems based on multilevel importance samplers. In particular, we focus on the question of how to compute effective importance samplers considering a multigrid scenario. We test our algorithm in finite horizon control problems based on Lorenz-96 model with chaotic and non-chaotic behaviour, showing, in all cases, that our multigrid implementation reduces the computational time and improves the effective sample size.Fil: Menchón, Silvia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países BajosFil: Kappen, Hilbert Johan. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países BajosTaylor & Francis Ltd2019-12-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91650Menchón, Silvia Adriana; Kappen, Hilbert Johan; Learning effective state-feedback controllers through efficient multilevel importance samplers; Taylor & Francis Ltd; International Journal Of Control; 92; 12; 21-12-2019; 2776-27830020-71791366-5820CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2018.1459857info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00207179.2018.1459857info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:33Zoai:ri.conicet.gov.ar:11336/91650instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:33.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
title |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
spellingShingle |
Learning effective state-feedback controllers through efficient multilevel importance samplers Menchón, Silvia Adriana IMPORTANCE SAMPLING MULTILEVEL MONTE CARLO METHOD PATH INTEGRAL CONTROL PROBLEMS |
title_short |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
title_full |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
title_fullStr |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
title_full_unstemmed |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
title_sort |
Learning effective state-feedback controllers through efficient multilevel importance samplers |
dc.creator.none.fl_str_mv |
Menchón, Silvia Adriana Kappen, Hilbert Johan |
author |
Menchón, Silvia Adriana |
author_facet |
Menchón, Silvia Adriana Kappen, Hilbert Johan |
author_role |
author |
author2 |
Kappen, Hilbert Johan |
author2_role |
author |
dc.subject.none.fl_str_mv |
IMPORTANCE SAMPLING MULTILEVEL MONTE CARLO METHOD PATH INTEGRAL CONTROL PROBLEMS |
topic |
IMPORTANCE SAMPLING MULTILEVEL MONTE CARLO METHOD PATH INTEGRAL CONTROL PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics and quadratic control cost. Although importance sampling is used to improve numerical computations, the effective sample size may still be low or many samples could be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear stochastic control problems based on multilevel importance samplers. In particular, we focus on the question of how to compute effective importance samplers considering a multigrid scenario. We test our algorithm in finite horizon control problems based on Lorenz-96 model with chaotic and non-chaotic behaviour, showing, in all cases, that our multigrid implementation reduces the computational time and improves the effective sample size. Fil: Menchón, Silvia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países Bajos Fil: Kappen, Hilbert Johan. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition and Behavior. SNN Machine Learning Group; Países Bajos |
description |
Monte Carlo sampling can be used to estimate the solution of path integral control problems, which are a restricted class of nonlinear control problems with arbitrary dynamics and state cost, but with a linear dependence of the control on the dynamics and quadratic control cost. Although importance sampling is used to improve numerical computations, the effective sample size may still be low or many samples could be required. In this work, we propose a method to learn effective state-feedback controllers for nonlinear stochastic control problems based on multilevel importance samplers. In particular, we focus on the question of how to compute effective importance samplers considering a multigrid scenario. We test our algorithm in finite horizon control problems based on Lorenz-96 model with chaotic and non-chaotic behaviour, showing, in all cases, that our multigrid implementation reduces the computational time and improves the effective sample size. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91650 Menchón, Silvia Adriana; Kappen, Hilbert Johan; Learning effective state-feedback controllers through efficient multilevel importance samplers; Taylor & Francis Ltd; International Journal Of Control; 92; 12; 21-12-2019; 2776-2783 0020-7179 1366-5820 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91650 |
identifier_str_mv |
Menchón, Silvia Adriana; Kappen, Hilbert Johan; Learning effective state-feedback controllers through efficient multilevel importance samplers; Taylor & Francis Ltd; International Journal Of Control; 92; 12; 21-12-2019; 2776-2783 0020-7179 1366-5820 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2018.1459857 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00207179.2018.1459857 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613674145153024 |
score |
13.070432 |