Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series
- Autores
- Rodriguez Rivero, Cristian; Pucheta, Julián; Laboret, Sergio; Sauchelli, Victor; Orjuela-Cañon, Alvaro David; Franco, Leonardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia.
Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España.
This paper propose that the combination of smoothing approach taking into account the entropic information provided by Renyi’ method, has an acceptable performance in term of forecasting errors. The methodology of the proposed scheme is examined through benchmark chaotic time series, such as Mackay Glass, Lorenz, Henon maps, the Lynx and rainfall from Santa Francisca series, with addition of white noise by using neural networks-based energy associated (EAS) predictor filter modified by Renyi entropy of the series. In particular, when the time series is short or long, the underlying dynamical system is nonlinear and temporal dependencies span long time intervals, in which this are also called long memory process. In such cases, the inherent nonlinearity of neural networks models and a higher robustness to noise seem to partially explain their better prediction performance when entropic information is extracted from the series. Then, to demonstrate that permutation entropy is computationally efficient, robust to outliers, and effective to measure complexity of time series, computational results are evaluated against several non-linear ANN predictors proposed before to show the predictability of noisy rainfall and chaotic time series reported in the literature.
http://ieeexplore.ieee.org/document/7885702/
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.
Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia.
Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España.
Control Automático y Robótica - Materia
-
Time series analysis
Entropy
Forecasting
Neural networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/553637
Ver los metadatos del registro completo
id |
RDUUNC_881a20dbc36e4f373c1142ab865028c6 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/553637 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall seriesRodriguez Rivero, CristianPucheta, JuliánLaboret, SergioSauchelli, VictorOrjuela-Cañon, Alvaro DavidFranco, LeonardoTime series analysisEntropyForecastingNeural networksFil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia.Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España.This paper propose that the combination of smoothing approach taking into account the entropic information provided by Renyi’ method, has an acceptable performance in term of forecasting errors. The methodology of the proposed scheme is examined through benchmark chaotic time series, such as Mackay Glass, Lorenz, Henon maps, the Lynx and rainfall from Santa Francisca series, with addition of white noise by using neural networks-based energy associated (EAS) predictor filter modified by Renyi entropy of the series. In particular, when the time series is short or long, the underlying dynamical system is nonlinear and temporal dependencies span long time intervals, in which this are also called long memory process. In such cases, the inherent nonlinearity of neural networks models and a higher robustness to noise seem to partially explain their better prediction performance when entropic information is extracted from the series. Then, to demonstrate that permutation entropy is computationally efficient, robust to outliers, and effective to measure complexity of time series, computational results are evaluated against several non-linear ANN predictors proposed before to show the predictability of noisy rainfall and chaotic time series reported in the literature.http://ieeexplore.ieee.org/document/7885702/Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina.Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia.Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España.Control Automático y Robótica2016info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf978-1-5090-5106-9http://hdl.handle.net/11086/553637enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:31:51Zoai:rdu.unc.edu.ar:11086/553637Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:31:51.258Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
title |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
spellingShingle |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series Rodriguez Rivero, Cristian Time series analysis Entropy Forecasting Neural networks |
title_short |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
title_full |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
title_fullStr |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
title_full_unstemmed |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
title_sort |
Noisy chaotic time series forecast approximated by combining Reny's entropy with energy associated to series method: Application to rainfall series |
dc.creator.none.fl_str_mv |
Rodriguez Rivero, Cristian Pucheta, Julián Laboret, Sergio Sauchelli, Victor Orjuela-Cañon, Alvaro David Franco, Leonardo |
author |
Rodriguez Rivero, Cristian |
author_facet |
Rodriguez Rivero, Cristian Pucheta, Julián Laboret, Sergio Sauchelli, Victor Orjuela-Cañon, Alvaro David Franco, Leonardo |
author_role |
author |
author2 |
Pucheta, Julián Laboret, Sergio Sauchelli, Victor Orjuela-Cañon, Alvaro David Franco, Leonardo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Time series analysis Entropy Forecasting Neural networks |
topic |
Time series analysis Entropy Forecasting Neural networks |
dc.description.none.fl_txt_mv |
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia. Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España. This paper propose that the combination of smoothing approach taking into account the entropic information provided by Renyi’ method, has an acceptable performance in term of forecasting errors. The methodology of the proposed scheme is examined through benchmark chaotic time series, such as Mackay Glass, Lorenz, Henon maps, the Lynx and rainfall from Santa Francisca series, with addition of white noise by using neural networks-based energy associated (EAS) predictor filter modified by Renyi entropy of the series. In particular, when the time series is short or long, the underlying dynamical system is nonlinear and temporal dependencies span long time intervals, in which this are also called long memory process. In such cases, the inherent nonlinearity of neural networks models and a higher robustness to noise seem to partially explain their better prediction performance when entropic information is extracted from the series. Then, to demonstrate that permutation entropy is computationally efficient, robust to outliers, and effective to measure complexity of time series, computational results are evaluated against several non-linear ANN predictors proposed before to show the predictability of noisy rainfall and chaotic time series reported in the literature. http://ieeexplore.ieee.org/document/7885702/ Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Sauchelli, Victor. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. Fil: Orjuela-Cañon, Alvaro David. Universidad Antonio Nariño Bogotá. Ingeniería Electrónica y Biomédica; Colombia. Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Informática; España. Control Automático y Robótica |
description |
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de Ingeniería Electrónica; Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
978-1-5090-5106-9 http://hdl.handle.net/11086/553637 |
identifier_str_mv |
978-1-5090-5106-9 |
url |
http://hdl.handle.net/11086/553637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842349624085446656 |
score |
13.13397 |