Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting
- Autores
- Rodríguez Rivero, Cristian; Pucheta, Julián; Patiño, Daniel; Puglisi, Jose Luis; Otaño, Paula; Franco, Leonardo; Juárez, Gustavo; Gorrostieta, Efrén; Orjuela-Cañon, Alvaro David
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Fil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina.
Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina.
Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina.
Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos.
Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba.
Fil: Franco, Leonardo. Universidad de Málaga; España.
Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina.
Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México.
Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia.
For time series forecasting, obtaining models is based on the use of past observations from the same sequence. In those cases, when the model is learning from data, there is not an extra information that discuss about the quantity of noise inside the data available. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about the propriety of the model. For this problem, the employment of the Bayesian inference tools are preferable. A modified algorithm used for training a long-short term memory recurrent neural network for time series forecasting is presented. This approach was chosen to improve the forecasting of the original series, employing an implementation based on the minimization of the associated Kullback-Leibler Information Criterion. For comparison, a nonlinear autoregressive model implemented with a feedforward neural network was also presented. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series and showing an improvement in terms of forecasting errors.
https://www.springer.com/gp/book/9783030362102?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook
publishedVersion
Fil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina.
Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina.
Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina.
Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos.
Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba.
Fil: Franco, Leonardo. Universidad de Málaga; España.
Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina.
Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México.
Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia.
Sistemas de Automatización y Control - Materia
-
Bayesian approximation
Time series forecasting
Nonlinear autoregressive models
Recurrent neural networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/559207
Ver los metadatos del registro completo
| id |
RDUUNC_1d7bcbeb19223df7915226d1542ab56f |
|---|---|
| oai_identifier_str |
oai:rdu.unc.edu.ar:11086/559207 |
| network_acronym_str |
RDUUNC |
| repository_id_str |
2572 |
| network_name_str |
Repositorio Digital Universitario (UNC) |
| spelling |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series ForecastingRodríguez Rivero, CristianPucheta, JuliánPatiño, DanielPuglisi, Jose LuisOtaño, PaulaFranco, LeonardoJuárez, GustavoGorrostieta, EfrénOrjuela-Cañon, Alvaro DavidBayesian approximationTime series forecastingNonlinear autoregressive modelsRecurrent neural networksFil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina.Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina.Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina.Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos.Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba.Fil: Franco, Leonardo. Universidad de Málaga; España.Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina.Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México.Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia.For time series forecasting, obtaining models is based on the use of past observations from the same sequence. In those cases, when the model is learning from data, there is not an extra information that discuss about the quantity of noise inside the data available. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about the propriety of the model. For this problem, the employment of the Bayesian inference tools are preferable. A modified algorithm used for training a long-short term memory recurrent neural network for time series forecasting is presented. This approach was chosen to improve the forecasting of the original series, employing an implementation based on the minimization of the associated Kullback-Leibler Information Criterion. For comparison, a nonlinear autoregressive model implemented with a feedforward neural network was also presented. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series and showing an improvement in terms of forecasting errors.https://www.springer.com/gp/book/9783030362102?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBookpublishedVersionFil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina.Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina.Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina.Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos.Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba.Fil: Franco, Leonardo. Universidad de Málaga; España.Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina.Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México.Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia.Sistemas de Automatización y Control2019info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf978-3-030-36211-9http://hdl.handle.net/11086/559207enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-12-04T09:22:30Zoai:rdu.unc.edu.ar:11086/559207Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-12-04 09:22:30.784Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
| dc.title.none.fl_str_mv |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| title |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| spellingShingle |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting Rodríguez Rivero, Cristian Bayesian approximation Time series forecasting Nonlinear autoregressive models Recurrent neural networks |
| title_short |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| title_full |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| title_fullStr |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| title_full_unstemmed |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| title_sort |
Bayesian Inference for Training of Long Short Term Memory Models in Chaotic Time Series Forecasting |
| dc.creator.none.fl_str_mv |
Rodríguez Rivero, Cristian Pucheta, Julián Patiño, Daniel Puglisi, Jose Luis Otaño, Paula Franco, Leonardo Juárez, Gustavo Gorrostieta, Efrén Orjuela-Cañon, Alvaro David |
| author |
Rodríguez Rivero, Cristian |
| author_facet |
Rodríguez Rivero, Cristian Pucheta, Julián Patiño, Daniel Puglisi, Jose Luis Otaño, Paula Franco, Leonardo Juárez, Gustavo Gorrostieta, Efrén Orjuela-Cañon, Alvaro David |
| author_role |
author |
| author2 |
Pucheta, Julián Patiño, Daniel Puglisi, Jose Luis Otaño, Paula Franco, Leonardo Juárez, Gustavo Gorrostieta, Efrén Orjuela-Cañon, Alvaro David |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
Bayesian approximation Time series forecasting Nonlinear autoregressive models Recurrent neural networks |
| topic |
Bayesian approximation Time series forecasting Nonlinear autoregressive models Recurrent neural networks |
| dc.description.none.fl_txt_mv |
Fil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina. Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina. Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos. Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Fil: Franco, Leonardo. Universidad de Málaga; España. Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina. Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México. Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia. For time series forecasting, obtaining models is based on the use of past observations from the same sequence. In those cases, when the model is learning from data, there is not an extra information that discuss about the quantity of noise inside the data available. In practice, it is necessary to deal with finite noisy datasets, which lead to uncertainty about the propriety of the model. For this problem, the employment of the Bayesian inference tools are preferable. A modified algorithm used for training a long-short term memory recurrent neural network for time series forecasting is presented. This approach was chosen to improve the forecasting of the original series, employing an implementation based on the minimization of the associated Kullback-Leibler Information Criterion. For comparison, a nonlinear autoregressive model implemented with a feedforward neural network was also presented. A simulation study was conducted to evaluate and illustrate results, comparing this approach with Bayesian neural-networks-based algorithms for artificial chaotic time-series and showing an improvement in terms of forecasting errors. https://www.springer.com/gp/book/9783030362102?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBook publishedVersion Fil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba; Argentina. Fil: Patiño, Daniel. Universidad Nacional de San Juan. Instituto de Automática; Argentina. Fil: Puglisi, Jose Luis. Universidad de Carolina del Norte; Estados Unidos. Fil: Otaño, Paula. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Fil: Franco, Leonardo. Universidad de Málaga; España. Fil: Juárez, Gustavo. Universidad Nacional de Tucumán; Argentina. Fil: Gorrostieta, Efrén. Universidad Autónoma de Querétaro; México. Fil: Orjuela-Cañon, Alvaro David. Universidad del Rosario; Colombia. Sistemas de Automatización y Control |
| description |
Fil: Rodríguez Rivero, Cristian. Universidad Nacional de Córdoba; Argentina. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
| format |
bookPart |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
978-3-030-36211-9 http://hdl.handle.net/11086/559207 |
| identifier_str_mv |
978-3-030-36211-9 |
| url |
http://hdl.handle.net/11086/559207 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
| reponame_str |
Repositorio Digital Universitario (UNC) |
| collection |
Repositorio Digital Universitario (UNC) |
| instname_str |
Universidad Nacional de Córdoba |
| instacron_str |
UNC |
| institution |
UNC |
| repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
| repository.mail.fl_str_mv |
oca.unc@gmail.com |
| _version_ |
1850582855883685888 |
| score |
12.703443 |