Characterization of time series via Rényi complexity–entropy curves
- Autores
- Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; dos Santos Mendes, Reino; Ribeiro, Haroldo Valentín
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.
Fil: Jauregui, Max. Universidade Estadual de Maringá. Departamento de Física; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa. Departamento de Física; Brasil
Fil: dos Santos Mendes, Reino. Universidade Estadual de Maringá. Departamento de Física; Brasil
Fil: Ribeiro, Haroldo Valentín. Universidade Estadual de Maringá. Departamento de Física; Brasil - Materia
-
TIME SERIES
RÉNYI ENTROPY
COMPLEXITY MEASURES
ORDINAL PATTERNS PROBABILITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89294
Ver los metadatos del registro completo
id |
CONICETDig_13e479e8e5c1bf151af135311ea1091e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89294 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Characterization of time series via Rényi complexity–entropy curvesJauregui, MaxZunino, Luciano JoséLenzi, Ervin K.dos Santos Mendes, ReinoRibeiro, Haroldo ValentínTIME SERIESRÉNYI ENTROPYCOMPLEXITY MEASURESORDINAL PATTERNS PROBABILITIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.Fil: Jauregui, Max. Universidade Estadual de Maringá. Departamento de Física; BrasilFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa. Departamento de Física; BrasilFil: dos Santos Mendes, Reino. Universidade Estadual de Maringá. Departamento de Física; BrasilFil: Ribeiro, Haroldo Valentín. Universidade Estadual de Maringá. Departamento de Física; BrasilElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89294Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; dos Santos Mendes, Reino; Ribeiro, Haroldo Valentín; Characterization of time series via Rényi complexity–entropy curves; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 498; 5-2018; 74-850378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378437118300463info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.01.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:20Zoai:ri.conicet.gov.ar:11336/89294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:20.31CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Characterization of time series via Rényi complexity–entropy curves |
title |
Characterization of time series via Rényi complexity–entropy curves |
spellingShingle |
Characterization of time series via Rényi complexity–entropy curves Jauregui, Max TIME SERIES RÉNYI ENTROPY COMPLEXITY MEASURES ORDINAL PATTERNS PROBABILITIES |
title_short |
Characterization of time series via Rényi complexity–entropy curves |
title_full |
Characterization of time series via Rényi complexity–entropy curves |
title_fullStr |
Characterization of time series via Rényi complexity–entropy curves |
title_full_unstemmed |
Characterization of time series via Rényi complexity–entropy curves |
title_sort |
Characterization of time series via Rényi complexity–entropy curves |
dc.creator.none.fl_str_mv |
Jauregui, Max Zunino, Luciano José Lenzi, Ervin K. dos Santos Mendes, Reino Ribeiro, Haroldo Valentín |
author |
Jauregui, Max |
author_facet |
Jauregui, Max Zunino, Luciano José Lenzi, Ervin K. dos Santos Mendes, Reino Ribeiro, Haroldo Valentín |
author_role |
author |
author2 |
Zunino, Luciano José Lenzi, Ervin K. dos Santos Mendes, Reino Ribeiro, Haroldo Valentín |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
TIME SERIES RÉNYI ENTROPY COMPLEXITY MEASURES ORDINAL PATTERNS PROBABILITIES |
topic |
TIME SERIES RÉNYI ENTROPY COMPLEXITY MEASURES ORDINAL PATTERNS PROBABILITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines. Fil: Jauregui, Max. Universidade Estadual de Maringá. Departamento de Física; Brasil Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina Fil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa. Departamento de Física; Brasil Fil: dos Santos Mendes, Reino. Universidade Estadual de Maringá. Departamento de Física; Brasil Fil: Ribeiro, Haroldo Valentín. Universidade Estadual de Maringá. Departamento de Física; Brasil |
description |
One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89294 Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; dos Santos Mendes, Reino; Ribeiro, Haroldo Valentín; Characterization of time series via Rényi complexity–entropy curves; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 498; 5-2018; 74-85 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89294 |
identifier_str_mv |
Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; dos Santos Mendes, Reino; Ribeiro, Haroldo Valentín; Characterization of time series via Rényi complexity–entropy curves; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 498; 5-2018; 74-85 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378437118300463 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.01.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268787665010688 |
score |
13.13397 |