Characterizing time series via complexity-entropy curves

Autores
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá; Brasil
Fil: Jauregui, Max. Universidade Estadual de Maringá; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa; Brasil
Materia
Complexity
Time Series
Complexity-Entropy Curves
Tsallis Entropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49233

id CONICETDig_8138607990f75ea0528f20d179b9b9a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/49233
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterizing time series via complexity-entropy curvesRibeiro, Haroldo V.Jauregui, MaxZunino, Luciano JoséLenzi, Ervin K.ComplexityTime SeriesComplexity-Entropy CurvesTsallis Entropyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá; BrasilFil: Jauregui, Max. Universidade Estadual de Maringá; BrasilFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; ArgentinaFil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa; BrasilAmerican Physical Society2017-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49233Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; Characterizing time series via complexity-entropy curves; American Physical Society; Physical Review E; 95; 6; 6-2017; 1-14; 0621062470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.95.062106info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.062106info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:31Zoai:ri.conicet.gov.ar:11336/49233instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:32.211CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterizing time series via complexity-entropy curves
title Characterizing time series via complexity-entropy curves
spellingShingle Characterizing time series via complexity-entropy curves
Ribeiro, Haroldo V.
Complexity
Time Series
Complexity-Entropy Curves
Tsallis Entropy
title_short Characterizing time series via complexity-entropy curves
title_full Characterizing time series via complexity-entropy curves
title_fullStr Characterizing time series via complexity-entropy curves
title_full_unstemmed Characterizing time series via complexity-entropy curves
title_sort Characterizing time series via complexity-entropy curves
dc.creator.none.fl_str_mv Ribeiro, Haroldo V.
Jauregui, Max
Zunino, Luciano José
Lenzi, Ervin K.
author Ribeiro, Haroldo V.
author_facet Ribeiro, Haroldo V.
Jauregui, Max
Zunino, Luciano José
Lenzi, Ervin K.
author_role author
author2 Jauregui, Max
Zunino, Luciano José
Lenzi, Ervin K.
author2_role author
author
author
dc.subject.none.fl_str_mv Complexity
Time Series
Complexity-Entropy Curves
Tsallis Entropy
topic Complexity
Time Series
Complexity-Entropy Curves
Tsallis Entropy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá; Brasil
Fil: Jauregui, Max. Universidade Estadual de Maringá; Brasil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina
Fil: Lenzi, Ervin K.. Universidade Estadual de Ponta Grossa; Brasil
description The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
publishDate 2017
dc.date.none.fl_str_mv 2017-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49233
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; Characterizing time series via complexity-entropy curves; American Physical Society; Physical Review E; 95; 6; 6-2017; 1-14; 062106
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49233
identifier_str_mv Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano José; Lenzi, Ervin K.; Characterizing time series via complexity-entropy curves; American Physical Society; Physical Review E; 95; 6; 6-2017; 1-14; 062106
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.95.062106
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.062106
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614092250152960
score 13.070432