On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian

Autores
Kaufmann, Uriel; Milne, Leandro Agustin
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
ELLIPTIC ONE-DIMENSIONAL PROBLEMS
POSITIVE SOLUTIONS
Φ-LAPLACIAN
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/186138

id CONICETDig_d7809d38ccd4551a4ff0a6303c504351
oai_identifier_str oai:ri.conicet.gov.ar:11336/186138
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On one-dimensional superlinear indefinite problems involving the ϕ -LaplacianKaufmann, UrielMilne, Leandro AgustinELLIPTIC ONE-DIMENSIONAL PROBLEMSPOSITIVE SOLUTIONSΦ-LAPLACIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaBirkhauser Verlag Ag2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186138Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-91661-7738CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11784-018-0613-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-018-0613-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:38:09Zoai:ri.conicet.gov.ar:11336/186138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:38:10.076CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
title On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
spellingShingle On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
Kaufmann, Uriel
ELLIPTIC ONE-DIMENSIONAL PROBLEMS
POSITIVE SOLUTIONS
Φ-LAPLACIAN
title_short On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
title_full On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
title_fullStr On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
title_full_unstemmed On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
title_sort On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
dc.creator.none.fl_str_mv Kaufmann, Uriel
Milne, Leandro Agustin
author Kaufmann, Uriel
author_facet Kaufmann, Uriel
Milne, Leandro Agustin
author_role author
author2 Milne, Leandro Agustin
author2_role author
dc.subject.none.fl_str_mv ELLIPTIC ONE-DIMENSIONAL PROBLEMS
POSITIVE SOLUTIONS
Φ-LAPLACIAN
topic ELLIPTIC ONE-DIMENSIONAL PROBLEMS
POSITIVE SOLUTIONS
Φ-LAPLACIAN
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/186138
Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-9
1661-7738
CONICET Digital
CONICET
url http://hdl.handle.net/11336/186138
identifier_str_mv Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-9
1661-7738
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11784-018-0613-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-018-0613-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426220503859200
score 13.10058