On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian
- Autores
- Kaufmann, Uriel; Milne, Leandro Agustin
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.
Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
ELLIPTIC ONE-DIMENSIONAL PROBLEMS
POSITIVE SOLUTIONS
Φ-LAPLACIAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186138
Ver los metadatos del registro completo
| id |
CONICETDig_d7809d38ccd4551a4ff0a6303c504351 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186138 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On one-dimensional superlinear indefinite problems involving the ϕ -LaplacianKaufmann, UrielMilne, Leandro AgustinELLIPTIC ONE-DIMENSIONAL PROBLEMSPOSITIVE SOLUTIONSΦ-LAPLACIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0.Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaBirkhauser Verlag Ag2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186138Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-91661-7738CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11784-018-0613-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-018-0613-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:38:09Zoai:ri.conicet.gov.ar:11336/186138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:38:10.076CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| title |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| spellingShingle |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian Kaufmann, Uriel ELLIPTIC ONE-DIMENSIONAL PROBLEMS POSITIVE SOLUTIONS Φ-LAPLACIAN |
| title_short |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| title_full |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| title_fullStr |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| title_full_unstemmed |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| title_sort |
On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian |
| dc.creator.none.fl_str_mv |
Kaufmann, Uriel Milne, Leandro Agustin |
| author |
Kaufmann, Uriel |
| author_facet |
Kaufmann, Uriel Milne, Leandro Agustin |
| author_role |
author |
| author2 |
Milne, Leandro Agustin |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ELLIPTIC ONE-DIMENSIONAL PROBLEMS POSITIVE SOLUTIONS Φ-LAPLACIAN |
| topic |
ELLIPTIC ONE-DIMENSIONAL PROBLEMS POSITIVE SOLUTIONS Φ-LAPLACIAN |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0. Fil: Kaufmann, Uriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Milne, Leandro Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
| description |
Let Ω : = (a, b) ⊂ R, m∈ L1(Ω) and ϕ: R→ R be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form {-ϕ(u′)′=m(x)f(u)inΩ,u=0on∂Ω,where f: [0 , ∞) → [0 , ∞) is a continuous function which is, roughly speaking, superlinear with respect to ϕ. Our approach combines the Guo-Krasnoselskiĭ fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case m≥ 0. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186138 Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-9 1661-7738 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/186138 |
| identifier_str_mv |
Kaufmann, Uriel; Milne, Leandro Agustin; On one-dimensional superlinear indefinite problems involving the ϕ -Laplacian; Birkhauser Verlag Ag; Journal Of Fixed Point Theory And Applications; 20; 3; 9-2018; 1-9 1661-7738 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11784-018-0613-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-018-0613-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426220503859200 |
| score |
13.10058 |