Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
- Autores
- Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; Cervigni, Gerardo Domingo Lucio
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.
EEA San Pedro
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Bortolotto, Eugenia Belén. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Faviere, Gabriela Soledad. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnología; Argentina
Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina - Fuente
- Euphytica 218 (8) : 107. (jul. 2022)
- Materia
-
Durazno
Prunus persica
Modelos Lineales
Modelos Estadísticos
Fitomejoramiento
Interacción Genotipo Ambiente
Peaches
Best Linear Unbiased Predictor
Linear Models
Statistical Models
Plant Breeding
Genetic Gain
Genotype Environment Interaction
Mejora Genética
BLUP
Linear Mixed Model
Multienvironment Trials
Modelo Lineal Mixto
Ganancia Genética
Ensayos Multiambientales - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/12355
Ver los metadatos del registro completo
id |
INTADig_f1216bc24d8576a8ad34a1e1e7f79c16 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/12355 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trialsAngelini, JuliaBortolotto, Eugenia BelénFaviere, Gabriela SoledadPairoba, Claudio FabiánValentini, Gabriel HugoCervigni, Gerardo Domingo LucioDuraznoPrunus persicaModelos LinealesModelos EstadísticosFitomejoramientoInteracción Genotipo AmbientePeachesBest Linear Unbiased PredictorLinear ModelsStatistical ModelsPlant BreedingGenetic GainGenotype Environment InteractionMejora GenéticaBLUPLinear Mixed ModelMultienvironment TrialsModelo Lineal MixtoGanancia GenéticaEnsayos MultiambientalesIdentification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.EEA San PedroFil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Bortolotto, Eugenia Belén. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Faviere, Gabriela Soledad. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnología; ArgentinaFil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); ArgentinaSpringer Nature2022-07-19T18:57:42Z2022-07-19T18:57:42Z2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/12355https://link.springer.com/article/10.1007/s10681-022-03063-31573-50600014-2336https://doi.org/10.1007/s10681-022-03063-3Euphytica 218 (8) : 107. (jul. 2022)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-29T13:45:37Zoai:localhost:20.500.12123/12355instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:45:37.839INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
spellingShingle |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials Angelini, Julia Durazno Prunus persica Modelos Lineales Modelos Estadísticos Fitomejoramiento Interacción Genotipo Ambiente Peaches Best Linear Unbiased Predictor Linear Models Statistical Models Plant Breeding Genetic Gain Genotype Environment Interaction Mejora Genética BLUP Linear Mixed Model Multienvironment Trials Modelo Lineal Mixto Ganancia Genética Ensayos Multiambientales |
title_short |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_full |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_fullStr |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_full_unstemmed |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_sort |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
dc.creator.none.fl_str_mv |
Angelini, Julia Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author |
Angelini, Julia |
author_facet |
Angelini, Julia Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author_role |
author |
author2 |
Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Durazno Prunus persica Modelos Lineales Modelos Estadísticos Fitomejoramiento Interacción Genotipo Ambiente Peaches Best Linear Unbiased Predictor Linear Models Statistical Models Plant Breeding Genetic Gain Genotype Environment Interaction Mejora Genética BLUP Linear Mixed Model Multienvironment Trials Modelo Lineal Mixto Ganancia Genética Ensayos Multiambientales |
topic |
Durazno Prunus persica Modelos Lineales Modelos Estadísticos Fitomejoramiento Interacción Genotipo Ambiente Peaches Best Linear Unbiased Predictor Linear Models Statistical Models Plant Breeding Genetic Gain Genotype Environment Interaction Mejora Genética BLUP Linear Mixed Model Multienvironment Trials Modelo Lineal Mixto Ganancia Genética Ensayos Multiambientales |
dc.description.none.fl_txt_mv |
Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes. EEA San Pedro Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Angelini, Julia. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario.Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Bortolotto, Eugenia Belén. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Faviere, Gabriela Soledad. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnología; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina Fil: Cervigni, Gerardo Domingo Lucio. Universidad Nacional de Rosario. Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI); Argentina |
description |
Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-19T18:57:42Z 2022-07-19T18:57:42Z 2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/12355 https://link.springer.com/article/10.1007/s10681-022-03063-3 1573-5060 0014-2336 https://doi.org/10.1007/s10681-022-03063-3 |
url |
http://hdl.handle.net/20.500.12123/12355 https://link.springer.com/article/10.1007/s10681-022-03063-3 https://doi.org/10.1007/s10681-022-03063-3 |
identifier_str_mv |
1573-5060 0014-2336 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
eu_rights_str_mv |
restrictedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
Euphytica 218 (8) : 107. (jul. 2022) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619166860967936 |
score |
12.559606 |