Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
- Autores
- Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; Cervigni, Gerardo Domingo Lucio
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario; Argentina
Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria San Pedro. Agencia de Extension Rural San Pedro.; Argentina
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina - Materia
-
BLUP
GENETIC GAIN
GENOTYPE-BY-ENVIRONMENT INTERACTION
LINEAR MIXED MODEL
MULTIENVIRONMENT TRIALS
PEACH BREEDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/211616
Ver los metadatos del registro completo
id |
CONICETDig_1f08028ecb698e03d6b53195cf69004c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/211616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trialsAngelini, JuliaBortolotto, Eugenia BelénFaviere, Gabriela SoledadPairoba, Claudio FabiánValentini, Gabriel HugoCervigni, Gerardo Domingo LucioBLUPGENETIC GAINGENOTYPE-BY-ENVIRONMENT INTERACTIONLINEAR MIXED MODELMULTIENVIRONMENT TRIALSPEACH BREEDINGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario; ArgentinaFil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria San Pedro. Agencia de Extension Rural San Pedro.; ArgentinaFil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaSpringer2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/211616Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; et al.; Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials; Springer; Euphytica; 218; 8; 8-2022; 1-130014-2336CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-022-03063-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s10681-022-03063-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:30Zoai:ri.conicet.gov.ar:11336/211616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:30.434CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
spellingShingle |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials Angelini, Julia BLUP GENETIC GAIN GENOTYPE-BY-ENVIRONMENT INTERACTION LINEAR MIXED MODEL MULTIENVIRONMENT TRIALS PEACH BREEDING |
title_short |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_full |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_fullStr |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_full_unstemmed |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
title_sort |
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials |
dc.creator.none.fl_str_mv |
Angelini, Julia Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author |
Angelini, Julia |
author_facet |
Angelini, Julia Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author_role |
author |
author2 |
Bortolotto, Eugenia Belén Faviere, Gabriela Soledad Pairoba, Claudio Fabián Valentini, Gabriel Hugo Cervigni, Gerardo Domingo Lucio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BLUP GENETIC GAIN GENOTYPE-BY-ENVIRONMENT INTERACTION LINEAR MIXED MODEL MULTIENVIRONMENT TRIALS PEACH BREEDING |
topic |
BLUP GENETIC GAIN GENOTYPE-BY-ENVIRONMENT INTERACTION LINEAR MIXED MODEL MULTIENVIRONMENT TRIALS PEACH BREEDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes. Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario; Argentina Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria San Pedro. Agencia de Extension Rural San Pedro.; Argentina Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina |
description |
Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/211616 Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; et al.; Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials; Springer; Euphytica; 218; 8; 8-2022; 1-13 0014-2336 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/211616 |
identifier_str_mv |
Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; et al.; Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials; Springer; Euphytica; 218; 8; 8-2022; 1-13 0014-2336 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-022-03063-3 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10681-022-03063-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614362285735936 |
score |
13.070432 |