Multiparametric analysis and authentication of Argentinian vinegars from spectral sources
- Autores
- Wagner, Marcelo; Zaldarriaga Heredia, Jorgelina; Montemerlo, Antonella; Ortiz, Daniela Alejandra; Camina, José; Garrido, Mariano; Azcarate, Silvana
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ultraviolet-visible (UV-Vis) and near infrared (NIR) spectroscopies allied to chemometrics were investigated for quality control and authentication of Argentinean wine and balsamic vinegars. First, a multiparametric approach was conducted to acquire predictive models by using partial least squares regression (PLS) to quantify total acidity, volatile acidity, fixed acidity, pH and total polyphenols that are the main quality parameters used to control products. Individual UV-Vis and NIR sensors as well as merged data were assessed. Reliability models with correlation coefficients higher than 0.99 and prediction error lesser than 2.2 were acquired for the UV-Vis data. Furthermore, a classification approach was performed on wine vinegar samples to classify them according to their acetification process. At first, the data provided by each individual sensor (UV-Vis and NIR) were separately analyzed by PLS-iscriminant analysis. Then, datasets were jointly analyzed by applying sequential and orthogonalized PLS coupled with linear discriminant analysis (SO-PLS-LDA). The overall accuracy of the fused model reached an optimal performance with a value of 0.92 in the prediction stage. Finally, according to the analysis proposed, this work reveals when it is proper to conduct a data fusion methodology.
Se investigaron las espectroscopias ultravioleta-visible (UV-Vis) e infrarroja cercana (NIR) aliadas a la quimiometría para control de calidad y autenticación de vinos y vinagres balsámicos argentinos. Primero, un enfoque multiparamétrico. se llevó a cabo para adquirir modelos predictivos mediante el uso de regresión de mínimos cuadrados parciales (PLS) para cuantificar el total acidez, acidez volátil, acidez fija, pH y polifenoles totales que son los principales parámetros de calidad utilizados para productos de control. Se evaluaron sensores UV-Vis y NIR individuales, así como datos combinados. Modelos de confiabilidad con coeficientes de correlación superiores a 0,99 y error de predicción inferior a 2,2 fueron adquiridos para el UV-Vis datos. Además, se realizó un enfoque de clasificación en muestras de vinagre de vino para clasificarlas según a su proceso de acetificación. Al principio, los datos proporcionados por cada sensor individual (UV-Vis y NIR) fueron analizados por separado mediante análisis discriminante PLS. Luego, los conjuntos de datos se analizaron conjuntamente aplicando secuencial y PLS ortogonalizado junto con análisis discriminante lineal (SO-PLS-LDA). La precisión general de la El modelo fusionado alcanzó un rendimiento óptimo con un valor de 0,92 en la etapa de predicción. Finalmente, según A partir del análisis propuesto, este trabajo revela cuándo es adecuado llevar a cabo una metodología de fusión de datos.
EEA Anguil
Fil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Montemerlo, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química de San Luis (INQUISAL); Argentina. Universidad Nacional de San Luis. Instituto de Química de San Luis (INQUISAL); Argentina
Fil: Ortiz, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina
Fil: Camiña, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Garrido, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
Fil: Azcarate, Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina - Fuente
- Journal of Food Composition and Analysis 125 : 105801 (January 2024)
- Materia
-
Vinagre
Control de Calidad
Análisis
Vinegar
Quality Control
Analysis
Argentina
Vinagre de Vino
Vinagre Balsámico
Análisis Multiparamétrico - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/16041
Ver los metadatos del registro completo
id |
INTADig_da4cf5727783795d2e0c730d68c9c10e |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/16041 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sourcesWagner, MarceloZaldarriaga Heredia, JorgelinaMontemerlo, AntonellaOrtiz, Daniela AlejandraCamina, JoséGarrido, MarianoAzcarate, SilvanaVinagreControl de CalidadAnálisisVinegarQuality ControlAnalysisArgentinaVinagre de VinoVinagre BalsámicoAnálisis MultiparamétricoUltraviolet-visible (UV-Vis) and near infrared (NIR) spectroscopies allied to chemometrics were investigated for quality control and authentication of Argentinean wine and balsamic vinegars. First, a multiparametric approach was conducted to acquire predictive models by using partial least squares regression (PLS) to quantify total acidity, volatile acidity, fixed acidity, pH and total polyphenols that are the main quality parameters used to control products. Individual UV-Vis and NIR sensors as well as merged data were assessed. Reliability models with correlation coefficients higher than 0.99 and prediction error lesser than 2.2 were acquired for the UV-Vis data. Furthermore, a classification approach was performed on wine vinegar samples to classify them according to their acetification process. At first, the data provided by each individual sensor (UV-Vis and NIR) were separately analyzed by PLS-iscriminant analysis. Then, datasets were jointly analyzed by applying sequential and orthogonalized PLS coupled with linear discriminant analysis (SO-PLS-LDA). The overall accuracy of the fused model reached an optimal performance with a value of 0.92 in the prediction stage. Finally, according to the analysis proposed, this work reveals when it is proper to conduct a data fusion methodology.Se investigaron las espectroscopias ultravioleta-visible (UV-Vis) e infrarroja cercana (NIR) aliadas a la quimiometría para control de calidad y autenticación de vinos y vinagres balsámicos argentinos. Primero, un enfoque multiparamétrico. se llevó a cabo para adquirir modelos predictivos mediante el uso de regresión de mínimos cuadrados parciales (PLS) para cuantificar el total acidez, acidez volátil, acidez fija, pH y polifenoles totales que son los principales parámetros de calidad utilizados para productos de control. Se evaluaron sensores UV-Vis y NIR individuales, así como datos combinados. Modelos de confiabilidad con coeficientes de correlación superiores a 0,99 y error de predicción inferior a 2,2 fueron adquiridos para el UV-Vis datos. Además, se realizó un enfoque de clasificación en muestras de vinagre de vino para clasificarlas según a su proceso de acetificación. Al principio, los datos proporcionados por cada sensor individual (UV-Vis y NIR) fueron analizados por separado mediante análisis discriminante PLS. Luego, los conjuntos de datos se analizaron conjuntamente aplicando secuencial y PLS ortogonalizado junto con análisis discriminante lineal (SO-PLS-LDA). La precisión general de la El modelo fusionado alcanzó un rendimiento óptimo con un valor de 0,92 en la etapa de predicción. Finalmente, según A partir del análisis propuesto, este trabajo revela cuándo es adecuado llevar a cabo una metodología de fusión de datos.EEA AnguilFil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Montemerlo, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química de San Luis (INQUISAL); Argentina. Universidad Nacional de San Luis. Instituto de Química de San Luis (INQUISAL); ArgentinaFil: Ortiz, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; ArgentinaFil: Camiña, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Garrido, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Azcarate, Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaElsevier2023-11-28T12:58:57Z2023-11-28T12:58:57Z2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/16041https://www.sciencedirect.com/science/article/pii/S08891575230067500889-1575https://doi.org/10.1016/j.jfca.2023.105801Journal of Food Composition and Analysis 125 : 105801 (January 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2019-PE-E7-I148-001, Procesos y tecnologías sostenibles para el agregado de valor en las cadenas y regionesinfo:eu-repo/semantics/restrictedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-11T10:24:49Zoai:localhost:20.500.12123/16041instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-11 10:24:49.746INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
title |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
spellingShingle |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources Wagner, Marcelo Vinagre Control de Calidad Análisis Vinegar Quality Control Analysis Argentina Vinagre de Vino Vinagre Balsámico Análisis Multiparamétrico |
title_short |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
title_full |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
title_fullStr |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
title_full_unstemmed |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
title_sort |
Multiparametric analysis and authentication of Argentinian vinegars from spectral sources |
dc.creator.none.fl_str_mv |
Wagner, Marcelo Zaldarriaga Heredia, Jorgelina Montemerlo, Antonella Ortiz, Daniela Alejandra Camina, José Garrido, Mariano Azcarate, Silvana |
author |
Wagner, Marcelo |
author_facet |
Wagner, Marcelo Zaldarriaga Heredia, Jorgelina Montemerlo, Antonella Ortiz, Daniela Alejandra Camina, José Garrido, Mariano Azcarate, Silvana |
author_role |
author |
author2 |
Zaldarriaga Heredia, Jorgelina Montemerlo, Antonella Ortiz, Daniela Alejandra Camina, José Garrido, Mariano Azcarate, Silvana |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Vinagre Control de Calidad Análisis Vinegar Quality Control Analysis Argentina Vinagre de Vino Vinagre Balsámico Análisis Multiparamétrico |
topic |
Vinagre Control de Calidad Análisis Vinegar Quality Control Analysis Argentina Vinagre de Vino Vinagre Balsámico Análisis Multiparamétrico |
dc.description.none.fl_txt_mv |
Ultraviolet-visible (UV-Vis) and near infrared (NIR) spectroscopies allied to chemometrics were investigated for quality control and authentication of Argentinean wine and balsamic vinegars. First, a multiparametric approach was conducted to acquire predictive models by using partial least squares regression (PLS) to quantify total acidity, volatile acidity, fixed acidity, pH and total polyphenols that are the main quality parameters used to control products. Individual UV-Vis and NIR sensors as well as merged data were assessed. Reliability models with correlation coefficients higher than 0.99 and prediction error lesser than 2.2 were acquired for the UV-Vis data. Furthermore, a classification approach was performed on wine vinegar samples to classify them according to their acetification process. At first, the data provided by each individual sensor (UV-Vis and NIR) were separately analyzed by PLS-iscriminant analysis. Then, datasets were jointly analyzed by applying sequential and orthogonalized PLS coupled with linear discriminant analysis (SO-PLS-LDA). The overall accuracy of the fused model reached an optimal performance with a value of 0.92 in the prediction stage. Finally, according to the analysis proposed, this work reveals when it is proper to conduct a data fusion methodology. Se investigaron las espectroscopias ultravioleta-visible (UV-Vis) e infrarroja cercana (NIR) aliadas a la quimiometría para control de calidad y autenticación de vinos y vinagres balsámicos argentinos. Primero, un enfoque multiparamétrico. se llevó a cabo para adquirir modelos predictivos mediante el uso de regresión de mínimos cuadrados parciales (PLS) para cuantificar el total acidez, acidez volátil, acidez fija, pH y polifenoles totales que son los principales parámetros de calidad utilizados para productos de control. Se evaluaron sensores UV-Vis y NIR individuales, así como datos combinados. Modelos de confiabilidad con coeficientes de correlación superiores a 0,99 y error de predicción inferior a 2,2 fueron adquiridos para el UV-Vis datos. Además, se realizó un enfoque de clasificación en muestras de vinagre de vino para clasificarlas según a su proceso de acetificación. Al principio, los datos proporcionados por cada sensor individual (UV-Vis y NIR) fueron analizados por separado mediante análisis discriminante PLS. Luego, los conjuntos de datos se analizaron conjuntamente aplicando secuencial y PLS ortogonalizado junto con análisis discriminante lineal (SO-PLS-LDA). La precisión general de la El modelo fusionado alcanzó un rendimiento óptimo con un valor de 0,92 en la etapa de predicción. Finalmente, según A partir del análisis propuesto, este trabajo revela cuándo es adecuado llevar a cabo una metodología de fusión de datos. EEA Anguil Fil: Wagner, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Zaldarriaga Heredia, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Montemerlo, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química de San Luis (INQUISAL); Argentina. Universidad Nacional de San Luis. Instituto de Química de San Luis (INQUISAL); Argentina Fil: Ortiz, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Anguil; Argentina Fil: Camiña, José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Garrido, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina Fil: Azcarate, Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina |
description |
Ultraviolet-visible (UV-Vis) and near infrared (NIR) spectroscopies allied to chemometrics were investigated for quality control and authentication of Argentinean wine and balsamic vinegars. First, a multiparametric approach was conducted to acquire predictive models by using partial least squares regression (PLS) to quantify total acidity, volatile acidity, fixed acidity, pH and total polyphenols that are the main quality parameters used to control products. Individual UV-Vis and NIR sensors as well as merged data were assessed. Reliability models with correlation coefficients higher than 0.99 and prediction error lesser than 2.2 were acquired for the UV-Vis data. Furthermore, a classification approach was performed on wine vinegar samples to classify them according to their acetification process. At first, the data provided by each individual sensor (UV-Vis and NIR) were separately analyzed by PLS-iscriminant analysis. Then, datasets were jointly analyzed by applying sequential and orthogonalized PLS coupled with linear discriminant analysis (SO-PLS-LDA). The overall accuracy of the fused model reached an optimal performance with a value of 0.92 in the prediction stage. Finally, according to the analysis proposed, this work reveals when it is proper to conduct a data fusion methodology. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-28T12:58:57Z 2023-11-28T12:58:57Z 2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/16041 https://www.sciencedirect.com/science/article/pii/S0889157523006750 0889-1575 https://doi.org/10.1016/j.jfca.2023.105801 |
url |
http://hdl.handle.net/20.500.12123/16041 https://www.sciencedirect.com/science/article/pii/S0889157523006750 https://doi.org/10.1016/j.jfca.2023.105801 |
identifier_str_mv |
0889-1575 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2019-PE-E7-I148-001, Procesos y tecnologías sostenibles para el agregado de valor en las cadenas y regiones |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Journal of Food Composition and Analysis 125 : 105801 (January 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842975521923661824 |
score |
12.993085 |