Quantitative genetics and genomics converge to accelerate forest tree breeding

Autores
Grattapaglia, Dario; Silva Junior, Orzenil B.; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; Tan, Biyue; Isik, Fikret; Ratcliffe, Blaise; El-Kassaby, Yousry A.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil
Fil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil
Fil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Suecia
Fil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fuente
Frontiers in Plant Science 9 : 1693 (November 2018)
Materia
Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/4605

id INTADig_5e3f519c0c2256b79b72aa95e91e2c9a
oai_identifier_str oai:localhost:20.500.12123/4605
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Quantitative genetics and genomics converge to accelerate forest tree breedingGrattapaglia, DarioSilva Junior, Orzenil B.Resende, Rafael T.Cappa, Eduardo PabloMüller, Bárbara S. F.Tan, BiyueIsik, FikretRatcliffe, BlaiseEl-Kassaby, Yousry A.Quantitative GeneticsQuantitative Trait LociForest TreesGenética CuantitativaLoci de Rasgos CuantitativosÁrboles ForestalesGenomic SelectionTree BreedingWhole-genome RegressionSingle Nucleotide PolymorphismsMarker Assisted SelectionRealized Genomic RelationshipSelección GenómicaCría de ArbolesRegresión de Todo el GenomaPolimorfismos de un Sólo NucleótidoSelección Asistida por MarcadorRelación Genómica RealizadaForest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados UnidosFil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; BrasilFil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; BrasilFil: Tan, Biyue. Stora Enso AB. Biomaterials Division; SueciaFil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados UnidosFil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá2019-03-14T12:58:47Z2019-03-14T12:58:47Z2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.frontiersin.org/articles/10.3389/fpls.2018.01693/fullhttp://hdl.handle.net/20.500.12123/4605https://doi.org/10.3389/fpls.2018.01693Frontiers in Plant Science 9 : 1693 (November 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-30T11:23:01Zoai:localhost:20.500.12123/4605instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-30 11:23:02.262INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Quantitative genetics and genomics converge to accelerate forest tree breeding
title Quantitative genetics and genomics converge to accelerate forest tree breeding
spellingShingle Quantitative genetics and genomics converge to accelerate forest tree breeding
Grattapaglia, Dario
Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
title_short Quantitative genetics and genomics converge to accelerate forest tree breeding
title_full Quantitative genetics and genomics converge to accelerate forest tree breeding
title_fullStr Quantitative genetics and genomics converge to accelerate forest tree breeding
title_full_unstemmed Quantitative genetics and genomics converge to accelerate forest tree breeding
title_sort Quantitative genetics and genomics converge to accelerate forest tree breeding
dc.creator.none.fl_str_mv Grattapaglia, Dario
Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
author Grattapaglia, Dario
author_facet Grattapaglia, Dario
Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
author_role author
author2 Silva Junior, Orzenil B.
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El-Kassaby, Yousry A.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
topic Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada
dc.description.none.fl_txt_mv Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil
Fil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil
Fil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Suecia
Fil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
description Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
2019-03-14T12:58:47Z
2019-03-14T12:58:47Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
http://hdl.handle.net/20.500.12123/4605
https://doi.org/10.3389/fpls.2018.01693
url https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
http://hdl.handle.net/20.500.12123/4605
https://doi.org/10.3389/fpls.2018.01693
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Frontiers in Plant Science 9 : 1693 (November 2018)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1847419434736549888
score 12.589754