Quantitative genetics and genomics converge to accelerate forest tree breeding
- Autores
- Grattapaglia, Dario; Silva Junior, Orzenil B.; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; Tan, Biyue; Isik, Fikret; Ratcliffe, Blaise; El-Kassaby, Yousry A.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil
Fil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina
Fil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil
Fil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Suecia
Fil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos
Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá
Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá - Fuente
- Frontiers in Plant Science 9 : 1693 (November 2018)
- Materia
-
Quantitative Genetics
Quantitative Trait Loci
Forest Trees
Genética Cuantitativa
Loci de Rasgos Cuantitativos
Árboles Forestales
Genomic Selection
Tree Breeding
Whole-genome Regression
Single Nucleotide Polymorphisms
Marker Assisted Selection
Realized Genomic Relationship
Selección Genómica
Cría de Arboles
Regresión de Todo el Genoma
Polimorfismos de un Sólo Nucleótido
Selección Asistida por Marcador
Relación Genómica Realizada - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/4605
Ver los metadatos del registro completo
| id |
INTADig_5e3f519c0c2256b79b72aa95e91e2c9a |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/4605 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Quantitative genetics and genomics converge to accelerate forest tree breedingGrattapaglia, DarioSilva Junior, Orzenil B.Resende, Rafael T.Cappa, Eduardo PabloMüller, Bárbara S. F.Tan, BiyueIsik, FikretRatcliffe, BlaiseEl-Kassaby, Yousry A.Quantitative GeneticsQuantitative Trait LociForest TreesGenética CuantitativaLoci de Rasgos CuantitativosÁrboles ForestalesGenomic SelectionTree BreedingWhole-genome RegressionSingle Nucleotide PolymorphismsMarker Assisted SelectionRealized Genomic RelationshipSelección GenómicaCría de ArbolesRegresión de Todo el GenomaPolimorfismos de un Sólo NucleótidoSelección Asistida por MarcadorRelación Genómica RealizadaForest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados UnidosFil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; BrasilFil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; BrasilFil: Tan, Biyue. Stora Enso AB. Biomaterials Division; SueciaFil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados UnidosFil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá2019-03-14T12:58:47Z2019-03-14T12:58:47Z2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.frontiersin.org/articles/10.3389/fpls.2018.01693/fullhttp://hdl.handle.net/20.500.12123/4605https://doi.org/10.3389/fpls.2018.01693Frontiers in Plant Science 9 : 1693 (November 2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-30T11:23:01Zoai:localhost:20.500.12123/4605instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-30 11:23:02.262INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| title |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| spellingShingle |
Quantitative genetics and genomics converge to accelerate forest tree breeding Grattapaglia, Dario Quantitative Genetics Quantitative Trait Loci Forest Trees Genética Cuantitativa Loci de Rasgos Cuantitativos Árboles Forestales Genomic Selection Tree Breeding Whole-genome Regression Single Nucleotide Polymorphisms Marker Assisted Selection Realized Genomic Relationship Selección Genómica Cría de Arboles Regresión de Todo el Genoma Polimorfismos de un Sólo Nucleótido Selección Asistida por Marcador Relación Genómica Realizada |
| title_short |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| title_full |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| title_fullStr |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| title_full_unstemmed |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| title_sort |
Quantitative genetics and genomics converge to accelerate forest tree breeding |
| dc.creator.none.fl_str_mv |
Grattapaglia, Dario Silva Junior, Orzenil B. Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El-Kassaby, Yousry A. |
| author |
Grattapaglia, Dario |
| author_facet |
Grattapaglia, Dario Silva Junior, Orzenil B. Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El-Kassaby, Yousry A. |
| author_role |
author |
| author2 |
Silva Junior, Orzenil B. Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El-Kassaby, Yousry A. |
| author2_role |
author author author author author author author author |
| dc.subject.none.fl_str_mv |
Quantitative Genetics Quantitative Trait Loci Forest Trees Genética Cuantitativa Loci de Rasgos Cuantitativos Árboles Forestales Genomic Selection Tree Breeding Whole-genome Regression Single Nucleotide Polymorphisms Marker Assisted Selection Realized Genomic Relationship Selección Genómica Cría de Arboles Regresión de Todo el Genoma Polimorfismos de un Sólo Nucleótido Selección Asistida por Marcador Relación Genómica Realizada |
| topic |
Quantitative Genetics Quantitative Trait Loci Forest Trees Genética Cuantitativa Loci de Rasgos Cuantitativos Árboles Forestales Genomic Selection Tree Breeding Whole-genome Regression Single Nucleotide Polymorphisms Marker Assisted Selection Realized Genomic Relationship Selección Genómica Cría de Arboles Regresión de Todo el Genoma Polimorfismos de un Sólo Nucleótido Selección Asistida por Marcador Relación Genómica Realizada |
| dc.description.none.fl_txt_mv |
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding. Fil: Grattapaglia, Dario. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos Fil: Silva-Junior, Orzenil B. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade Católica de Brasília. Programa de Ciências Genômicas e Biotecnologia; Brasil Fil: Resende, Rafael T. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina Fil: Müller, Bárbara S. F. EMBRAPA Recursos Genéticos e Biotecnologia; Brasil. Universidade de Brasília. Departamento de Biologia Celular; Brasil Fil: Tan, Biyue. Stora Enso AB. Biomaterials Division; Suecia Fil: Isik, Fikret. North Carolina State University. Department of Forestry and Environmental Resources; Estados Unidos Fil: Rateliffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá Fil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canadá |
| description |
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters’ estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-11 2019-03-14T12:58:47Z 2019-03-14T12:58:47Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full http://hdl.handle.net/20.500.12123/4605 https://doi.org/10.3389/fpls.2018.01693 |
| url |
https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full http://hdl.handle.net/20.500.12123/4605 https://doi.org/10.3389/fpls.2018.01693 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Frontiers in Plant Science 9 : 1693 (November 2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1847419434736549888 |
| score |
12.589754 |