Efficient genomics-based ‘end-to-end’ selective tree breeding framework

Autores
El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Porth, Ilga M.. Laval University; Canadá
Materia
GWAS
GENOMIC SELECTION
QUANTITATIVE GENOMICS
TREE BREEDING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230780

id CONICETDig_55f2444245cb3470f3c3054c02b19f19
oai_identifier_str oai:ri.conicet.gov.ar:11336/230780
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Efficient genomics-based ‘end-to-end’ selective tree breeding frameworkEl Kassaby, Yousry A.Cappa, Eduardo PabloChen, CharlesRatcliffe, BlaisePorth, Ilga M.GWASGENOMIC SELECTIONQUANTITATIVE GENOMICSTREE BREEDINGhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.Fil: El Kassaby, Yousry A.. University of British Columbia; CanadáFil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Chen, Charles. Oklahoma State University; Estados UnidosFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: Porth, Ilga M.. Laval University; CanadáNature Publishing Group2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230780El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-1050018-067X1365-2540CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-023-00667-w.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-023-00667-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:04Zoai:ri.conicet.gov.ar:11336/230780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:04.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Efficient genomics-based ‘end-to-end’ selective tree breeding framework
title Efficient genomics-based ‘end-to-end’ selective tree breeding framework
spellingShingle Efficient genomics-based ‘end-to-end’ selective tree breeding framework
El Kassaby, Yousry A.
GWAS
GENOMIC SELECTION
QUANTITATIVE GENOMICS
TREE BREEDING
title_short Efficient genomics-based ‘end-to-end’ selective tree breeding framework
title_full Efficient genomics-based ‘end-to-end’ selective tree breeding framework
title_fullStr Efficient genomics-based ‘end-to-end’ selective tree breeding framework
title_full_unstemmed Efficient genomics-based ‘end-to-end’ selective tree breeding framework
title_sort Efficient genomics-based ‘end-to-end’ selective tree breeding framework
dc.creator.none.fl_str_mv El Kassaby, Yousry A.
Cappa, Eduardo Pablo
Chen, Charles
Ratcliffe, Blaise
Porth, Ilga M.
author El Kassaby, Yousry A.
author_facet El Kassaby, Yousry A.
Cappa, Eduardo Pablo
Chen, Charles
Ratcliffe, Blaise
Porth, Ilga M.
author_role author
author2 Cappa, Eduardo Pablo
Chen, Charles
Ratcliffe, Blaise
Porth, Ilga M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv GWAS
GENOMIC SELECTION
QUANTITATIVE GENOMICS
TREE BREEDING
topic GWAS
GENOMIC SELECTION
QUANTITATIVE GENOMICS
TREE BREEDING
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Porth, Ilga M.. Laval University; Canadá
description Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230780
El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-105
0018-067X
1365-2540
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230780
identifier_str_mv El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-105
0018-067X
1365-2540
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-023-00667-w.pdf
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-023-00667-w
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782432142950400
score 12.982451