Efficient genomics-based ‘end-to-end’ selective tree breeding framework
- Autores
- El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina
Fil: Chen, Charles. Oklahoma State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: Porth, Ilga M.. Laval University; Canadá - Materia
-
GWAS
GENOMIC SELECTION
QUANTITATIVE GENOMICS
TREE BREEDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230780
Ver los metadatos del registro completo
| id |
CONICETDig_55f2444245cb3470f3c3054c02b19f19 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230780 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Efficient genomics-based ‘end-to-end’ selective tree breeding frameworkEl Kassaby, Yousry A.Cappa, Eduardo PabloChen, CharlesRatcliffe, BlaisePorth, Ilga M.GWASGENOMIC SELECTIONQUANTITATIVE GENOMICSTREE BREEDINGhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.Fil: El Kassaby, Yousry A.. University of British Columbia; CanadáFil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Chen, Charles. Oklahoma State University; Estados UnidosFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: Porth, Ilga M.. Laval University; CanadáNature Publishing Group2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230780El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-1050018-067X1365-2540CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-023-00667-w.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-023-00667-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:07:04Zoai:ri.conicet.gov.ar:11336/230780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:07:04.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| title |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| spellingShingle |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework El Kassaby, Yousry A. GWAS GENOMIC SELECTION QUANTITATIVE GENOMICS TREE BREEDING |
| title_short |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| title_full |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| title_fullStr |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| title_full_unstemmed |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| title_sort |
Efficient genomics-based ‘end-to-end’ selective tree breeding framework |
| dc.creator.none.fl_str_mv |
El Kassaby, Yousry A. Cappa, Eduardo Pablo Chen, Charles Ratcliffe, Blaise Porth, Ilga M. |
| author |
El Kassaby, Yousry A. |
| author_facet |
El Kassaby, Yousry A. Cappa, Eduardo Pablo Chen, Charles Ratcliffe, Blaise Porth, Ilga M. |
| author_role |
author |
| author2 |
Cappa, Eduardo Pablo Chen, Charles Ratcliffe, Blaise Porth, Ilga M. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
GWAS GENOMIC SELECTION QUANTITATIVE GENOMICS TREE BREEDING |
| topic |
GWAS GENOMIC SELECTION QUANTITATIVE GENOMICS TREE BREEDING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively. Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina Fil: Chen, Charles. Oklahoma State University; Estados Unidos Fil: Ratcliffe, Blaise. University of British Columbia; Canadá Fil: Porth, Ilga M.. Laval University; Canadá |
| description |
Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1) leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230780 El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-105 0018-067X 1365-2540 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/230780 |
| identifier_str_mv |
El Kassaby, Yousry A.; Cappa, Eduardo Pablo; Chen, Charles; Ratcliffe, Blaise; Porth, Ilga M.; Efficient genomics-based ‘end-to-end’ selective tree breeding framework; Nature Publishing Group; Heredity; 132; 2; 1-2024; 98-105 0018-067X 1365-2540 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-023-00667-w.pdf info:eu-repo/semantics/altIdentifier/doi/10.1038/s41437-023-00667-w |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Nature Publishing Group |
| publisher.none.fl_str_mv |
Nature Publishing Group |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782432142950400 |
| score |
12.982451 |