Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding

Autores
Grattapaglia, Dario; Silva Junior, Orzenil B. da; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; Tan, Biyue; Isik, Fikret; Ratcliffe, Blaise; El Kassaby, Yousry A.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Tan, Biyue. No especifíca;
Fil: Isik, Fikret. North Carolina State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá
Materia
GENOMIC SELECTION (GS)
MARKER ASSISTED SELECTION (MAS)
QUANTITATIVE GENETICS
REALIZED GENOMIC RELATIONSHIP
SINGLE NUCLEOTIDE POLYMORPHISMS (SNP)
TREE BREEDING
WHOLE-GENOME REGRESSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/177752

id CONICETDig_d560e952cbc413f1d793aa3c6c5f008b
oai_identifier_str oai:ri.conicet.gov.ar:11336/177752
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantitative Genetics and Genomics Converge to Accelerate Forest Tree BreedingGrattapaglia, DarioSilva Junior, Orzenil B. daResende, Rafael T.Cappa, Eduardo PabloMüller, Bárbara S. F.Tan, BiyueIsik, FikretRatcliffe, BlaiseEl Kassaby, Yousry A.GENOMIC SELECTION (GS)MARKER ASSISTED SELECTION (MAS)QUANTITATIVE GENETICSREALIZED GENOMIC RELATIONSHIPSINGLE NUCLEOTIDE POLYMORPHISMS (SNP)TREE BREEDINGWHOLE-GENOME REGRESSIONhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; BrasilFil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Tan, Biyue. No especifíca;Fil: Isik, Fikret. North Carolina State University; Estados UnidosFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: El Kassaby, Yousry A.. University of British Columbia; CanadáFrontiers Media2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177752Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-101664-462XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fpls.2018.01693/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.01693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:30Zoai:ri.conicet.gov.ar:11336/177752instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:31.143CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
title Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
spellingShingle Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
Grattapaglia, Dario
GENOMIC SELECTION (GS)
MARKER ASSISTED SELECTION (MAS)
QUANTITATIVE GENETICS
REALIZED GENOMIC RELATIONSHIP
SINGLE NUCLEOTIDE POLYMORPHISMS (SNP)
TREE BREEDING
WHOLE-GENOME REGRESSION
title_short Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
title_full Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
title_fullStr Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
title_full_unstemmed Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
title_sort Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
dc.creator.none.fl_str_mv Grattapaglia, Dario
Silva Junior, Orzenil B. da
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El Kassaby, Yousry A.
author Grattapaglia, Dario
author_facet Grattapaglia, Dario
Silva Junior, Orzenil B. da
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El Kassaby, Yousry A.
author_role author
author2 Silva Junior, Orzenil B. da
Resende, Rafael T.
Cappa, Eduardo Pablo
Müller, Bárbara S. F.
Tan, Biyue
Isik, Fikret
Ratcliffe, Blaise
El Kassaby, Yousry A.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GENOMIC SELECTION (GS)
MARKER ASSISTED SELECTION (MAS)
QUANTITATIVE GENETICS
REALIZED GENOMIC RELATIONSHIP
SINGLE NUCLEOTIDE POLYMORPHISMS (SNP)
TREE BREEDING
WHOLE-GENOME REGRESSION
topic GENOMIC SELECTION (GS)
MARKER ASSISTED SELECTION (MAS)
QUANTITATIVE GENETICS
REALIZED GENOMIC RELATIONSHIP
SINGLE NUCLEOTIDE POLYMORPHISMS (SNP)
TREE BREEDING
WHOLE-GENOME REGRESSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Tan, Biyue. No especifíca;
Fil: Isik, Fikret. North Carolina State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá
description Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/177752
Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-10
1664-462X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/177752
identifier_str_mv Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-10
1664-462X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fpls.2018.01693/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.01693
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613765517017088
score 13.070432