Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding
- Autores
- Grattapaglia, Dario; Silva Junior, Orzenil B. da; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; Tan, Biyue; Isik, Fikret; Ratcliffe, Blaise; El Kassaby, Yousry A.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil
Fil: Tan, Biyue. No especifíca;
Fil: Isik, Fikret. North Carolina State University; Estados Unidos
Fil: Ratcliffe, Blaise. University of British Columbia; Canadá
Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá - Materia
-
GENOMIC SELECTION (GS)
MARKER ASSISTED SELECTION (MAS)
QUANTITATIVE GENETICS
REALIZED GENOMIC RELATIONSHIP
SINGLE NUCLEOTIDE POLYMORPHISMS (SNP)
TREE BREEDING
WHOLE-GENOME REGRESSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/177752
Ver los metadatos del registro completo
id |
CONICETDig_d560e952cbc413f1d793aa3c6c5f008b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/177752 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree BreedingGrattapaglia, DarioSilva Junior, Orzenil B. daResende, Rafael T.Cappa, Eduardo PabloMüller, Bárbara S. F.Tan, BiyueIsik, FikretRatcliffe, BlaiseEl Kassaby, Yousry A.GENOMIC SELECTION (GS)MARKER ASSISTED SELECTION (MAS)QUANTITATIVE GENETICSREALIZED GENOMIC RELATIONSHIPSINGLE NUCLEOTIDE POLYMORPHISMS (SNP)TREE BREEDINGWHOLE-GENOME REGRESSIONhttps://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; BrasilFil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Tan, Biyue. No especifíca;Fil: Isik, Fikret. North Carolina State University; Estados UnidosFil: Ratcliffe, Blaise. University of British Columbia; CanadáFil: El Kassaby, Yousry A.. University of British Columbia; CanadáFrontiers Media2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/177752Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-101664-462XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fpls.2018.01693/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.01693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:30Zoai:ri.conicet.gov.ar:11336/177752instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:31.143CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
title |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
spellingShingle |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding Grattapaglia, Dario GENOMIC SELECTION (GS) MARKER ASSISTED SELECTION (MAS) QUANTITATIVE GENETICS REALIZED GENOMIC RELATIONSHIP SINGLE NUCLEOTIDE POLYMORPHISMS (SNP) TREE BREEDING WHOLE-GENOME REGRESSION |
title_short |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
title_full |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
title_fullStr |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
title_full_unstemmed |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
title_sort |
Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding |
dc.creator.none.fl_str_mv |
Grattapaglia, Dario Silva Junior, Orzenil B. da Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El Kassaby, Yousry A. |
author |
Grattapaglia, Dario |
author_facet |
Grattapaglia, Dario Silva Junior, Orzenil B. da Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El Kassaby, Yousry A. |
author_role |
author |
author2 |
Silva Junior, Orzenil B. da Resende, Rafael T. Cappa, Eduardo Pablo Müller, Bárbara S. F. Tan, Biyue Isik, Fikret Ratcliffe, Blaise El Kassaby, Yousry A. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
GENOMIC SELECTION (GS) MARKER ASSISTED SELECTION (MAS) QUANTITATIVE GENETICS REALIZED GENOMIC RELATIONSHIP SINGLE NUCLEOTIDE POLYMORPHISMS (SNP) TREE BREEDING WHOLE-GENOME REGRESSION |
topic |
GENOMIC SELECTION (GS) MARKER ASSISTED SELECTION (MAS) QUANTITATIVE GENETICS REALIZED GENOMIC RELATIONSHIP SINGLE NUCLEOTIDE POLYMORPHISMS (SNP) TREE BREEDING WHOLE-GENOME REGRESSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.5 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding. Fil: Grattapaglia, Dario. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil Fil: Silva Junior, Orzenil B. da. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Resende, Rafael T.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil; Brasil Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Müller, Bárbara S. F.. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil Fil: Tan, Biyue. No especifíca; Fil: Isik, Fikret. North Carolina State University; Estados Unidos Fil: Ratcliffe, Blaise. University of British Columbia; Canadá Fil: El Kassaby, Yousry A.. University of British Columbia; Canadá |
description |
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/177752 Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-10 1664-462X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/177752 |
identifier_str_mv |
Grattapaglia, Dario; Silva Junior, Orzenil B. da ; Resende, Rafael T.; Cappa, Eduardo Pablo; Müller, Bárbara S. F.; et al.; Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding; Frontiers Media; Frontiers in Plant Science; 871; 11-2018; 1-10 1664-462X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fpls.2018.01693/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fpls.2018.01693 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613765517017088 |
score |
13.070432 |