Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
- Autores
- Duarte, Damían; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurion, Carmelo; Grattapaglia, Darío; Cappa, Eduardo Pablo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Instituto de Recursos Biológicos
Fil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Fuente
- Frontiers in Plant Science 15 : 1462285 (October 2024)
- Materia
-
Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/20756
Ver los metadatos del registro completo
id |
INTADig_b5e63423f43a6596c2d7aa55dcb97da2 |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/20756 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis populationDuarte, DamíanJurcic, Esteban JavierDutour, JoaquínVillalba, Pamela VictoriaCenturion, CarmeloGrattapaglia, DaríoCappa, Eduardo PabloSeedling StageMarker-assisted SelectionForest TreesEstadío de PlántulaEucalyptusEucalyptus grandisSelección Asistida por MarcadoresArboles ForestalesGenomic Selection EffectivenessGenomic SelectionEficacia de la Selección GenómicaGenomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.Instituto de Recursos BiológicosFil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; UruguayFil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; UruguayFil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; UruguayFil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Media2024-12-26T14:01:49Z2024-12-26T14:01:49Z2024-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/20756https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full1664-462Xhttps://doi.org/10.3389/fpls.2024.1462285Frontiers in Plant Science 15 : 1462285 (October 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PE-L01-I067, Mejoramiento genético y silvicultura de plantaciones para la producción sostenible de productos forestales para distintos destinos industrialesinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:50Zoai:localhost:20.500.12123/20756instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:51.08INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
title |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
spellingShingle |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population Duarte, Damían Seedling Stage Marker-assisted Selection Forest Trees Estadío de Plántula Eucalyptus Eucalyptus grandis Selección Asistida por Marcadores Arboles Forestales Genomic Selection Effectiveness Genomic Selection Eficacia de la Selección Genómica |
title_short |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
title_full |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
title_fullStr |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
title_full_unstemmed |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
title_sort |
Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population |
dc.creator.none.fl_str_mv |
Duarte, Damían Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurion, Carmelo Grattapaglia, Darío Cappa, Eduardo Pablo |
author |
Duarte, Damían |
author_facet |
Duarte, Damían Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurion, Carmelo Grattapaglia, Darío Cappa, Eduardo Pablo |
author_role |
author |
author2 |
Jurcic, Esteban Javier Dutour, Joaquín Villalba, Pamela Victoria Centurion, Carmelo Grattapaglia, Darío Cappa, Eduardo Pablo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Seedling Stage Marker-assisted Selection Forest Trees Estadío de Plántula Eucalyptus Eucalyptus grandis Selección Asistida por Marcadores Arboles Forestales Genomic Selection Effectiveness Genomic Selection Eficacia de la Selección Genómica |
topic |
Seedling Stage Marker-assisted Selection Forest Trees Estadío de Plántula Eucalyptus Eucalyptus grandis Selección Asistida por Marcadores Arboles Forestales Genomic Selection Effectiveness Genomic Selection Eficacia de la Selección Genómica |
dc.description.none.fl_txt_mv |
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance. Instituto de Recursos Biológicos Fil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; Uruguay Fil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; Brasil Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-26T14:01:49Z 2024-12-26T14:01:49Z 2024-10-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/20756 https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full 1664-462X https://doi.org/10.3389/fpls.2024.1462285 |
url |
http://hdl.handle.net/20.500.12123/20756 https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full https://doi.org/10.3389/fpls.2024.1462285 |
identifier_str_mv |
1664-462X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repograntAgreement/INTA/2023-PE-L01-I067, Mejoramiento genético y silvicultura de plantaciones para la producción sostenible de productos forestales para distintos destinos industriales |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
Frontiers in Plant Science 15 : 1462285 (October 2024) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341433038602240 |
score |
12.623145 |