Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population

Autores
Duarte, Damían; Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurion, Carmelo; Grattapaglia, Darío; Cappa, Eduardo Pablo
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Instituto de Recursos Biológicos
Fil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fuente
Frontiers in Plant Science 15 : 1462285 (October 2024)
Materia
Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/20756

id INTADig_b5e63423f43a6596c2d7aa55dcb97da2
oai_identifier_str oai:localhost:20.500.12123/20756
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis populationDuarte, DamíanJurcic, Esteban JavierDutour, JoaquínVillalba, Pamela VictoriaCenturion, CarmeloGrattapaglia, DaríoCappa, Eduardo PabloSeedling StageMarker-assisted SelectionForest TreesEstadío de PlántulaEucalyptusEucalyptus grandisSelección Asistida por MarcadoresArboles ForestalesGenomic Selection EffectivenessGenomic SelectionEficacia de la Selección GenómicaGenomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.Instituto de Recursos BiológicosFil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; UruguayFil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; UruguayFil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; UruguayFil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; BrasilFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFrontiers Media2024-12-26T14:01:49Z2024-12-26T14:01:49Z2024-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/20756https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full1664-462Xhttps://doi.org/10.3389/fpls.2024.1462285Frontiers in Plant Science 15 : 1462285 (October 2024)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repograntAgreement/INTA/2023-PE-L01-I067, Mejoramiento genético y silvicultura de plantaciones para la producción sostenible de productos forestales para distintos destinos industrialesinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:50:50Zoai:localhost:20.500.12123/20756instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:50:51.08INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
spellingShingle Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
Duarte, Damían
Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
title_short Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_full Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_fullStr Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_full_unstemmed Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
title_sort Genomic selection in forest trees comes to life: unraveling its potential in an advanced four - generation Eucalyptus grandis population
dc.creator.none.fl_str_mv Duarte, Damían
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
author Duarte, Damían
author_facet Duarte, Damían
Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
author_role author
author2 Jurcic, Esteban Javier
Dutour, Joaquín
Villalba, Pamela Victoria
Centurion, Carmelo
Grattapaglia, Darío
Cappa, Eduardo Pablo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
topic Seedling Stage
Marker-assisted Selection
Forest Trees
Estadío de Plántula
Eucalyptus
Eucalyptus grandis
Selección Asistida por Marcadores
Arboles Forestales
Genomic Selection Effectiveness
Genomic Selection
Eficacia de la Selección Genómica
dc.description.none.fl_txt_mv Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
Instituto de Recursos Biológicos
Fil: Duarte, Damián. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Jurcic, Esteban J. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Dutour, Joaquín. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Centurion, Carmelo. Forestal Oriental. UPM, Paysandú; Uruguay
Fil: Grattapaglia, Darío. EMBRAPA Genetic Resources and Biotechnology. Plant Genetic Laboratory; Brasil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Genomic Selection (GS) in tree breeding optimizes genetic gains by leveraging genomic data to enable early selection of seedlings without phenotypic data reducing breeding cycle and increasing selection intensity. Traditional assessments of the potential of GS in forest trees have typically focused on model performance using cross-validation within the same generation but evaluating effectively realized predictive ability (RPA) across generations is crucial. This study estimated RPAs for volume growth (VOL), wood density (WD), and pulp yield (PY) across four generations breeding of Eucalyptus grandis. The training set spanned three generations, including 34,461 trees with three-year growth data, 6,014 trees with wood quality trait data, and 1,918 trees with 12,695 SNPs (single nucleotide polymorphisms) data. Employing single-step genomic BLUP, we compared the genomic predictions of breeding values (GEBVs) for 1,153 fourth-generation full-sib seedlings in the greenhouse with their later-collected phenotypic estimated breeding values (EBVs) at age three years. RPAs were estimated using three GS targets (individual trees, trees within families, and families), two selection criteria (single- and multiple-trait), and training populations of either all 1,918 genotyped trees or the 67 direct ancestors of the selection candidates. RPAs were higher for wood quality traits (0.33 to 0.59) compared to VOL (0.14 to 0.19) and improved for wood traits (0.42 to 0.75) but not for VOL when trained only with direct ancestors, highlighting the challenges in accurately predicting growth traits. GS was more effective at excluding bottom-ranked candidates than selecting top-ranked ones. The between-family GS approach outperformed individual-tree selection for VOL (0.11 to 0.16) and PY (0.72 to 0.75), but not for WD (0.43 vs. 0.42). Furthermore, higher levels of relatedness and lower genotype by environment (G × E) interaction between training and testing populations enhanced RPAs for VOL (0.39). In summary, despite limited effectiveness in ranking top VOL individuals, GS effectively identified low-performing individuals and families. These multi- generational findings underscore GS’s potential in tree breeding, stressing the importance of considering relatedness and G × E interaction for optimal performance.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-26T14:01:49Z
2024-12-26T14:01:49Z
2024-10-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12123/20756
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full
1664-462X
https://doi.org/10.3389/fpls.2024.1462285
url http://hdl.handle.net/20.500.12123/20756
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1462285/full
https://doi.org/10.3389/fpls.2024.1462285
identifier_str_mv 1664-462X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repograntAgreement/INTA/2023-PE-L01-I067, Mejoramiento genético y silvicultura de plantaciones para la producción sostenible de productos forestales para distintos destinos industriales
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv Frontiers in Plant Science 15 : 1462285 (October 2024)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341433038602240
score 12.623145