Transcriptional regulation of tocopherol biosynthesis in tomato

Autores
Quadrana, Leandro Daniel; Almeida de Souza, Juliana Beatriz; Otaiza, Santiago N.; Duffy, Tomas; Silva, Junia V. Corrêa da; Godoy, Fabiana de; Asís, Ramón; Bermúdez, Luisa; Fernie, Alisdair R.; Carrari, Fernando; Rossi, Magdalena
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.
Instituto de Biotecnología
Fil: Quadrana, Leandro Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Almeida de Souza, Juliana Beatriz. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Otaiza, Santiago N. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina
Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Silva, Junia V. Corrêa da. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Godoy, Fabiana de. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Asis, Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina
Fil: Bermúdez, Luisa. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Fernie, Alisdair R. Max Planck Institute for Molecular Plant Physiology; Alemania
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Rossi, Magdalena. Universidade de São Pablo. Instituto de Biociências. Departamento de Botânica; Brasil
Fuente
Plant Molecular Biology 81 (3) : 309–325 (February 2013)
Materia
Tomate
Tocoferoles
Antioxidantes
Metabolismo
Vitamina E
Tomatoes
Tocopherols
Antioxidants
Metabolism
Vitamin E
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/4271

id INTADig_3a929740098fcb896c21dd5663d4461d
oai_identifier_str oai:localhost:20.500.12123/4271
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Transcriptional regulation of tocopherol biosynthesis in tomatoQuadrana, Leandro DanielAlmeida de Souza, Juliana BeatrizOtaiza, Santiago N.Duffy, TomasSilva, Junia V. Corrêa daGodoy, Fabiana deAsís, RamónBermúdez, LuisaFernie, Alisdair R.Carrari, FernandoRossi, MagdalenaTomateTocoferolesAntioxidantesMetabolismoVitamina ETomatoesTocopherolsAntioxidantsMetabolismVitamin ETocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.Instituto de BiotecnologíaFil: Quadrana, Leandro Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Almeida de Souza, Juliana Beatriz. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; BrasilFil: Otaiza, Santiago N. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Silva, Junia V. Corrêa da. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; BrasilFil: Godoy, Fabiana de. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; BrasilFil: Asis, Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Bermúdez, Luisa. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; BrasilFil: Fernie, Alisdair R. Max Planck Institute for Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Rossi, Magdalena. Universidade de São Pablo. Instituto de Biociências. Departamento de Botânica; BrasilSpringer2019-01-15T17:08:17Z2019-01-15T17:08:17Z2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://link.springer.com/article/10.1007/s11103-012-0001-4http://hdl.handle.net/20.500.12123/42710167-44121573-5028https://doi.org/10.1007/s11103-012-0001-4Plant Molecular Biology 81 (3) : 309–325 (February 2013)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-09-04T09:47:46Zoai:localhost:20.500.12123/4271instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:47:46.782INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Transcriptional regulation of tocopherol biosynthesis in tomato
title Transcriptional regulation of tocopherol biosynthesis in tomato
spellingShingle Transcriptional regulation of tocopherol biosynthesis in tomato
Quadrana, Leandro Daniel
Tomate
Tocoferoles
Antioxidantes
Metabolismo
Vitamina E
Tomatoes
Tocopherols
Antioxidants
Metabolism
Vitamin E
title_short Transcriptional regulation of tocopherol biosynthesis in tomato
title_full Transcriptional regulation of tocopherol biosynthesis in tomato
title_fullStr Transcriptional regulation of tocopherol biosynthesis in tomato
title_full_unstemmed Transcriptional regulation of tocopherol biosynthesis in tomato
title_sort Transcriptional regulation of tocopherol biosynthesis in tomato
dc.creator.none.fl_str_mv Quadrana, Leandro Daniel
Almeida de Souza, Juliana Beatriz
Otaiza, Santiago N.
Duffy, Tomas
Silva, Junia V. Corrêa da
Godoy, Fabiana de
Asís, Ramón
Bermúdez, Luisa
Fernie, Alisdair R.
Carrari, Fernando
Rossi, Magdalena
author Quadrana, Leandro Daniel
author_facet Quadrana, Leandro Daniel
Almeida de Souza, Juliana Beatriz
Otaiza, Santiago N.
Duffy, Tomas
Silva, Junia V. Corrêa da
Godoy, Fabiana de
Asís, Ramón
Bermúdez, Luisa
Fernie, Alisdair R.
Carrari, Fernando
Rossi, Magdalena
author_role author
author2 Almeida de Souza, Juliana Beatriz
Otaiza, Santiago N.
Duffy, Tomas
Silva, Junia V. Corrêa da
Godoy, Fabiana de
Asís, Ramón
Bermúdez, Luisa
Fernie, Alisdair R.
Carrari, Fernando
Rossi, Magdalena
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Tomate
Tocoferoles
Antioxidantes
Metabolismo
Vitamina E
Tomatoes
Tocopherols
Antioxidants
Metabolism
Vitamin E
topic Tomate
Tocoferoles
Antioxidantes
Metabolismo
Vitamina E
Tomatoes
Tocopherols
Antioxidants
Metabolism
Vitamin E
dc.description.none.fl_txt_mv Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.
Instituto de Biotecnología
Fil: Quadrana, Leandro Daniel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Almeida de Souza, Juliana Beatriz. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Otaiza, Santiago N. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina
Fil: Duffy, Tomás. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Silva, Junia V. Corrêa da. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Godoy, Fabiana de. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Asis, Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina
Fil: Bermúdez, Luisa. Universidade de Sao Paulo. Instituto de Biociências. Departamento de Botânica; Brasil
Fil: Fernie, Alisdair R. Max Planck Institute for Molecular Plant Physiology; Alemania
Fil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Rossi, Magdalena. Universidade de São Pablo. Instituto de Biociências. Departamento de Botânica; Brasil
description Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
2019-01-15T17:08:17Z
2019-01-15T17:08:17Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://link.springer.com/article/10.1007/s11103-012-0001-4
http://hdl.handle.net/20.500.12123/4271
0167-4412
1573-5028
https://doi.org/10.1007/s11103-012-0001-4
url https://link.springer.com/article/10.1007/s11103-012-0001-4
http://hdl.handle.net/20.500.12123/4271
https://doi.org/10.1007/s11103-012-0001-4
identifier_str_mv 0167-4412
1573-5028
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Plant Molecular Biology 81 (3) : 309–325 (February 2013)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1842341362581635072
score 12.623145