Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System
- Autores
- Gagliostro, Gerardo Antonio; Antonacci, Liliana Elisabet; Perez, Carolina Daiana; Rossetti, Luciana; Carabajal, Augusto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective was to reduce saturated fatty acids (SFA) and increase conjugated linoleic acid (CLA, cis- 9, trans -11 C18:2), α-linolenic (cis- 9, cis- 12, cis- 15 C18:3) and docosahexaenoic (DHA, C22:6) contents in milk from confined dairy cows in order to promote a healthier option. The work was carried out in a commercial farm (Talar) located in Laguna del Sauce, Maldonado (Uruguay). Twenty four cows were assigned to one of two treatments (12 cows per treatment) over a 6 weeks experimental period. Treatments consisted in a control total mixed ration (C-TMR) without supplementary lipids (L) or the same TMR with the addition of 0.144 kg/cow∙day of algae and 0.72 kg/cow∙day of soybean oil (L-TMR). Chemical composition of the TMR (44.27% DM) averaged 15.94% for crude protein (CP), 38.20% neutral detergent fiber (NDF), 20.36% acid detergent fiber (ADF), 5.56% fat, 5.30% ash and 28.6% nonstructural carbohydrate (NSCH) with 1.81 Mcal/kg of net energy for lactation (NEL). After 39 days of feeding, individual milk samples were collected during three consecutive days. From the total milk collected, 20 ml were immediately used for chemical composition (Milko Scan) and 80 ml for analysis for milk FA profile. From week 3 onwards, milk production (kg/cow∙day) resulted higher (P < 0.001) in L-TMR (36.9) compared to C-TMR (35.2). At week 6 of trial, the difference in milk production averaged 5.14% for L-TMR. Supplementary lipids reduced (P < 0.002) milk fat concentration (g/100g) from 3.36 in C-TMR to 2.40 in L-TMR without effect (P = 0.43) on milk protein content (C-TMR = 3.20; L-TMR = 3.07 g/100g). Milk lactose (C-TMR = 4.86, L-TMR = 4.69 g/100g) and urea nitrogen contents (C-TMR = 21.18, L-TMR = 17.33 g/100g) tended (P < 0.056) to decrease in L-TMR as well as fat corrected milk output (C-TMR = 30.89, L-TMR = 29.49 kg/cow∙day, P < 0.098). Lipid supplementation reduced (−23%) milk content of C12:0 to C16:0 FA averaging 45.19 in C-TMR and 34.74 g/100g in L-TMR (P < 0.001). The atherogenic index (AI) of milk decreased (P < 0.001) from 2.69 in C-TMR to 1.50 in L-TMR (−44.2%). Concentration (g/100g) of elaidic (C18:1 trans -9) (0.23) and C18:1 trans -10 (0.44) FA increased (P < 0.001) in L-TMR milk. Milk vaccenic acid (trans- 11 C18:1, VA) increased from 1.08 in C-TMR to 2.56 g/100g of FA in L-TMR (P < 0.001). Milk CLA content (cis- 9, trans- 11 C18:2) increased (127%) from 0.62 in C-TMR to 1.41 g/100g FA in L-TMR milk. Content of α-linolenic acid resulted 20% higher (P < 0.001) in L-TMR milk (0.35 g/100g FA) compared to C-TMR (0.30 g/100g FA). Milk DHA increased from 0 in C-TMR to 0.14 g/100g FA in L-TMR. The omega-6/-3 ratio in C-TMR milk (9.61) was reduced (P < 0.001) to 6.78 in L-TMR milk. Milk oleic acid (cis -9 C18:1) resulted higher (P < 0.001) in L-TMR (23.65) than in C-TMR (19.75 g/100g FA). The nutritional value of milk fat from confined cows was naturally improved by feeding polyunsaturated FA in the ration, obtaining a reduction of saturated FA and increased levels of healthy FA (CLA, DHA and α-linolenic).
Fil: Gagliostro, Gerardo Antonio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina.
Fil: Antonacci, Liliana Elisabet. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina.
Fil: Perez, Carolina Daiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
Fil: Rossetti, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina.
Fil: Carabajal, Augusto. Establecimiento Agroindustrial Talar. Laguna del Sauce. Departamento de Maldonado; Uruguay - Fuente
- Agricultural Sciences 9 (9) : 1115-1130 (2018)
- Materia
-
Dairy Cows
Fatty Acids
Linoleic Acid
Docosahexaenoic Acid
Soybean Oil
Food Supplementation
Vacas Lecheras
Ácidos Grasos
Ácido Linoléico
Ácido Docosahexaenóico
Aceite de Soja
Milk Fatty Acids
DHA-Micro Algae
Confined Production System
Ácidos Grasos Lácteos
Sistema de Producción en Confinamiento - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/7355
Ver los metadatos del registro completo
id |
INTADig_0a89c34bdb7c3728ffebb3ebcb5b6c0b |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/7355 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production SystemGagliostro, Gerardo AntonioAntonacci, Liliana ElisabetPerez, Carolina DaianaRossetti, LucianaCarabajal, AugustoDairy CowsFatty AcidsLinoleic AcidDocosahexaenoic AcidSoybean OilFood SupplementationVacas LecherasÁcidos GrasosÁcido LinoléicoÁcido DocosahexaenóicoAceite de SojaMilk Fatty AcidsDHA-Micro AlgaeConfined Production SystemÁcidos Grasos LácteosSistema de Producción en ConfinamientoThe objective was to reduce saturated fatty acids (SFA) and increase conjugated linoleic acid (CLA, cis- 9, trans -11 C18:2), α-linolenic (cis- 9, cis- 12, cis- 15 C18:3) and docosahexaenoic (DHA, C22:6) contents in milk from confined dairy cows in order to promote a healthier option. The work was carried out in a commercial farm (Talar) located in Laguna del Sauce, Maldonado (Uruguay). Twenty four cows were assigned to one of two treatments (12 cows per treatment) over a 6 weeks experimental period. Treatments consisted in a control total mixed ration (C-TMR) without supplementary lipids (L) or the same TMR with the addition of 0.144 kg/cow∙day of algae and 0.72 kg/cow∙day of soybean oil (L-TMR). Chemical composition of the TMR (44.27% DM) averaged 15.94% for crude protein (CP), 38.20% neutral detergent fiber (NDF), 20.36% acid detergent fiber (ADF), 5.56% fat, 5.30% ash and 28.6% nonstructural carbohydrate (NSCH) with 1.81 Mcal/kg of net energy for lactation (NEL). After 39 days of feeding, individual milk samples were collected during three consecutive days. From the total milk collected, 20 ml were immediately used for chemical composition (Milko Scan) and 80 ml for analysis for milk FA profile. From week 3 onwards, milk production (kg/cow∙day) resulted higher (P < 0.001) in L-TMR (36.9) compared to C-TMR (35.2). At week 6 of trial, the difference in milk production averaged 5.14% for L-TMR. Supplementary lipids reduced (P < 0.002) milk fat concentration (g/100g) from 3.36 in C-TMR to 2.40 in L-TMR without effect (P = 0.43) on milk protein content (C-TMR = 3.20; L-TMR = 3.07 g/100g). Milk lactose (C-TMR = 4.86, L-TMR = 4.69 g/100g) and urea nitrogen contents (C-TMR = 21.18, L-TMR = 17.33 g/100g) tended (P < 0.056) to decrease in L-TMR as well as fat corrected milk output (C-TMR = 30.89, L-TMR = 29.49 kg/cow∙day, P < 0.098). Lipid supplementation reduced (−23%) milk content of C12:0 to C16:0 FA averaging 45.19 in C-TMR and 34.74 g/100g in L-TMR (P < 0.001). The atherogenic index (AI) of milk decreased (P < 0.001) from 2.69 in C-TMR to 1.50 in L-TMR (−44.2%). Concentration (g/100g) of elaidic (C18:1 trans -9) (0.23) and C18:1 trans -10 (0.44) FA increased (P < 0.001) in L-TMR milk. Milk vaccenic acid (trans- 11 C18:1, VA) increased from 1.08 in C-TMR to 2.56 g/100g of FA in L-TMR (P < 0.001). Milk CLA content (cis- 9, trans- 11 C18:2) increased (127%) from 0.62 in C-TMR to 1.41 g/100g FA in L-TMR milk. Content of α-linolenic acid resulted 20% higher (P < 0.001) in L-TMR milk (0.35 g/100g FA) compared to C-TMR (0.30 g/100g FA). Milk DHA increased from 0 in C-TMR to 0.14 g/100g FA in L-TMR. The omega-6/-3 ratio in C-TMR milk (9.61) was reduced (P < 0.001) to 6.78 in L-TMR milk. Milk oleic acid (cis -9 C18:1) resulted higher (P < 0.001) in L-TMR (23.65) than in C-TMR (19.75 g/100g FA). The nutritional value of milk fat from confined cows was naturally improved by feeding polyunsaturated FA in the ration, obtaining a reduction of saturated FA and increased levels of healthy FA (CLA, DHA and α-linolenic).Fil: Gagliostro, Gerardo Antonio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina.Fil: Antonacci, Liliana Elisabet. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina.Fil: Perez, Carolina Daiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Rossetti, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina.Fil: Carabajal, Augusto. Establecimiento Agroindustrial Talar. Laguna del Sauce. Departamento de Maldonado; Uruguay2020-06-03T17:54:38Z2020-06-03T17:54:38Z2018-09-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/7355https://www.scirp.org/journal/paperinformation.aspx?paperid=872852156-85612156-8553https://doi.org/10.4236/as.2018.99078Agricultural Sciences 9 (9) : 1115-1130 (2018)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-29T13:44:57Zoai:localhost:20.500.12123/7355instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-29 13:44:57.713INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
title |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
spellingShingle |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System Gagliostro, Gerardo Antonio Dairy Cows Fatty Acids Linoleic Acid Docosahexaenoic Acid Soybean Oil Food Supplementation Vacas Lecheras Ácidos Grasos Ácido Linoléico Ácido Docosahexaenóico Aceite de Soja Milk Fatty Acids DHA-Micro Algae Confined Production System Ácidos Grasos Lácteos Sistema de Producción en Confinamiento |
title_short |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
title_full |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
title_fullStr |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
title_full_unstemmed |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
title_sort |
Improving the Quality of Milk Fatty Acid in Dairy Cows Supplemented with Soybean Oil and DHA-Micro Algae in a Confined Production System |
dc.creator.none.fl_str_mv |
Gagliostro, Gerardo Antonio Antonacci, Liliana Elisabet Perez, Carolina Daiana Rossetti, Luciana Carabajal, Augusto |
author |
Gagliostro, Gerardo Antonio |
author_facet |
Gagliostro, Gerardo Antonio Antonacci, Liliana Elisabet Perez, Carolina Daiana Rossetti, Luciana Carabajal, Augusto |
author_role |
author |
author2 |
Antonacci, Liliana Elisabet Perez, Carolina Daiana Rossetti, Luciana Carabajal, Augusto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Dairy Cows Fatty Acids Linoleic Acid Docosahexaenoic Acid Soybean Oil Food Supplementation Vacas Lecheras Ácidos Grasos Ácido Linoléico Ácido Docosahexaenóico Aceite de Soja Milk Fatty Acids DHA-Micro Algae Confined Production System Ácidos Grasos Lácteos Sistema de Producción en Confinamiento |
topic |
Dairy Cows Fatty Acids Linoleic Acid Docosahexaenoic Acid Soybean Oil Food Supplementation Vacas Lecheras Ácidos Grasos Ácido Linoléico Ácido Docosahexaenóico Aceite de Soja Milk Fatty Acids DHA-Micro Algae Confined Production System Ácidos Grasos Lácteos Sistema de Producción en Confinamiento |
dc.description.none.fl_txt_mv |
The objective was to reduce saturated fatty acids (SFA) and increase conjugated linoleic acid (CLA, cis- 9, trans -11 C18:2), α-linolenic (cis- 9, cis- 12, cis- 15 C18:3) and docosahexaenoic (DHA, C22:6) contents in milk from confined dairy cows in order to promote a healthier option. The work was carried out in a commercial farm (Talar) located in Laguna del Sauce, Maldonado (Uruguay). Twenty four cows were assigned to one of two treatments (12 cows per treatment) over a 6 weeks experimental period. Treatments consisted in a control total mixed ration (C-TMR) without supplementary lipids (L) or the same TMR with the addition of 0.144 kg/cow∙day of algae and 0.72 kg/cow∙day of soybean oil (L-TMR). Chemical composition of the TMR (44.27% DM) averaged 15.94% for crude protein (CP), 38.20% neutral detergent fiber (NDF), 20.36% acid detergent fiber (ADF), 5.56% fat, 5.30% ash and 28.6% nonstructural carbohydrate (NSCH) with 1.81 Mcal/kg of net energy for lactation (NEL). After 39 days of feeding, individual milk samples were collected during three consecutive days. From the total milk collected, 20 ml were immediately used for chemical composition (Milko Scan) and 80 ml for analysis for milk FA profile. From week 3 onwards, milk production (kg/cow∙day) resulted higher (P < 0.001) in L-TMR (36.9) compared to C-TMR (35.2). At week 6 of trial, the difference in milk production averaged 5.14% for L-TMR. Supplementary lipids reduced (P < 0.002) milk fat concentration (g/100g) from 3.36 in C-TMR to 2.40 in L-TMR without effect (P = 0.43) on milk protein content (C-TMR = 3.20; L-TMR = 3.07 g/100g). Milk lactose (C-TMR = 4.86, L-TMR = 4.69 g/100g) and urea nitrogen contents (C-TMR = 21.18, L-TMR = 17.33 g/100g) tended (P < 0.056) to decrease in L-TMR as well as fat corrected milk output (C-TMR = 30.89, L-TMR = 29.49 kg/cow∙day, P < 0.098). Lipid supplementation reduced (−23%) milk content of C12:0 to C16:0 FA averaging 45.19 in C-TMR and 34.74 g/100g in L-TMR (P < 0.001). The atherogenic index (AI) of milk decreased (P < 0.001) from 2.69 in C-TMR to 1.50 in L-TMR (−44.2%). Concentration (g/100g) of elaidic (C18:1 trans -9) (0.23) and C18:1 trans -10 (0.44) FA increased (P < 0.001) in L-TMR milk. Milk vaccenic acid (trans- 11 C18:1, VA) increased from 1.08 in C-TMR to 2.56 g/100g of FA in L-TMR (P < 0.001). Milk CLA content (cis- 9, trans- 11 C18:2) increased (127%) from 0.62 in C-TMR to 1.41 g/100g FA in L-TMR milk. Content of α-linolenic acid resulted 20% higher (P < 0.001) in L-TMR milk (0.35 g/100g FA) compared to C-TMR (0.30 g/100g FA). Milk DHA increased from 0 in C-TMR to 0.14 g/100g FA in L-TMR. The omega-6/-3 ratio in C-TMR milk (9.61) was reduced (P < 0.001) to 6.78 in L-TMR milk. Milk oleic acid (cis -9 C18:1) resulted higher (P < 0.001) in L-TMR (23.65) than in C-TMR (19.75 g/100g FA). The nutritional value of milk fat from confined cows was naturally improved by feeding polyunsaturated FA in the ration, obtaining a reduction of saturated FA and increased levels of healthy FA (CLA, DHA and α-linolenic). Fil: Gagliostro, Gerardo Antonio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina. Fil: Antonacci, Liliana Elisabet. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Balcarce. Area de Producción Animal; Argentina. Fil: Perez, Carolina Daiana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Rossetti, Luciana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto Tecnología de Alimentos; Argentina. Fil: Carabajal, Augusto. Establecimiento Agroindustrial Talar. Laguna del Sauce. Departamento de Maldonado; Uruguay |
description |
The objective was to reduce saturated fatty acids (SFA) and increase conjugated linoleic acid (CLA, cis- 9, trans -11 C18:2), α-linolenic (cis- 9, cis- 12, cis- 15 C18:3) and docosahexaenoic (DHA, C22:6) contents in milk from confined dairy cows in order to promote a healthier option. The work was carried out in a commercial farm (Talar) located in Laguna del Sauce, Maldonado (Uruguay). Twenty four cows were assigned to one of two treatments (12 cows per treatment) over a 6 weeks experimental period. Treatments consisted in a control total mixed ration (C-TMR) without supplementary lipids (L) or the same TMR with the addition of 0.144 kg/cow∙day of algae and 0.72 kg/cow∙day of soybean oil (L-TMR). Chemical composition of the TMR (44.27% DM) averaged 15.94% for crude protein (CP), 38.20% neutral detergent fiber (NDF), 20.36% acid detergent fiber (ADF), 5.56% fat, 5.30% ash and 28.6% nonstructural carbohydrate (NSCH) with 1.81 Mcal/kg of net energy for lactation (NEL). After 39 days of feeding, individual milk samples were collected during three consecutive days. From the total milk collected, 20 ml were immediately used for chemical composition (Milko Scan) and 80 ml for analysis for milk FA profile. From week 3 onwards, milk production (kg/cow∙day) resulted higher (P < 0.001) in L-TMR (36.9) compared to C-TMR (35.2). At week 6 of trial, the difference in milk production averaged 5.14% for L-TMR. Supplementary lipids reduced (P < 0.002) milk fat concentration (g/100g) from 3.36 in C-TMR to 2.40 in L-TMR without effect (P = 0.43) on milk protein content (C-TMR = 3.20; L-TMR = 3.07 g/100g). Milk lactose (C-TMR = 4.86, L-TMR = 4.69 g/100g) and urea nitrogen contents (C-TMR = 21.18, L-TMR = 17.33 g/100g) tended (P < 0.056) to decrease in L-TMR as well as fat corrected milk output (C-TMR = 30.89, L-TMR = 29.49 kg/cow∙day, P < 0.098). Lipid supplementation reduced (−23%) milk content of C12:0 to C16:0 FA averaging 45.19 in C-TMR and 34.74 g/100g in L-TMR (P < 0.001). The atherogenic index (AI) of milk decreased (P < 0.001) from 2.69 in C-TMR to 1.50 in L-TMR (−44.2%). Concentration (g/100g) of elaidic (C18:1 trans -9) (0.23) and C18:1 trans -10 (0.44) FA increased (P < 0.001) in L-TMR milk. Milk vaccenic acid (trans- 11 C18:1, VA) increased from 1.08 in C-TMR to 2.56 g/100g of FA in L-TMR (P < 0.001). Milk CLA content (cis- 9, trans- 11 C18:2) increased (127%) from 0.62 in C-TMR to 1.41 g/100g FA in L-TMR milk. Content of α-linolenic acid resulted 20% higher (P < 0.001) in L-TMR milk (0.35 g/100g FA) compared to C-TMR (0.30 g/100g FA). Milk DHA increased from 0 in C-TMR to 0.14 g/100g FA in L-TMR. The omega-6/-3 ratio in C-TMR milk (9.61) was reduced (P < 0.001) to 6.78 in L-TMR milk. Milk oleic acid (cis -9 C18:1) resulted higher (P < 0.001) in L-TMR (23.65) than in C-TMR (19.75 g/100g FA). The nutritional value of milk fat from confined cows was naturally improved by feeding polyunsaturated FA in the ration, obtaining a reduction of saturated FA and increased levels of healthy FA (CLA, DHA and α-linolenic). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-10 2020-06-03T17:54:38Z 2020-06-03T17:54:38Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/7355 https://www.scirp.org/journal/paperinformation.aspx?paperid=87285 2156-8561 2156-8553 https://doi.org/10.4236/as.2018.99078 |
url |
http://hdl.handle.net/20.500.12123/7355 https://www.scirp.org/journal/paperinformation.aspx?paperid=87285 https://doi.org/10.4236/as.2018.99078 |
identifier_str_mv |
2156-8561 2156-8553 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Agricultural Sciences 9 (9) : 1115-1130 (2018) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1844619144727625728 |
score |
12.559606 |