Weak matrix majorization
- Autores
- Martinez Peria, Francisco Dardo; Massey, Pedro Gustavo; Silvestre, Luis Enrique
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X≻ w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻ s ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻ w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments.
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Silvestre, Luis Enrique. University of Texas at Austin; Estados Unidos - Materia
-
MULTIVARIATE AND DIRECTIONAL MATRIX MAJORIZATIONS
ROW STOCHASTIC MATRICES
MUTUALLY COMMUTING SELFADJOINT MATRICES
CONVEX SETS AND FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108527
Ver los metadatos del registro completo
id |
CONICETDig_ff3ed29b8576931f702623bf80af2541 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108527 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak matrix majorizationMartinez Peria, Francisco DardoMassey, Pedro GustavoSilvestre, Luis EnriqueMULTIVARIATE AND DIRECTIONAL MATRIX MAJORIZATIONSROW STOCHASTIC MATRICESMUTUALLY COMMUTING SELFADJOINT MATRICESCONVEX SETS AND FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X≻ w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻ s ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻ w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments.Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Silvestre, Luis Enrique. University of Texas at Austin; Estados UnidosElsevier Science Inc2005-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108527Martinez Peria, Francisco Dardo; Massey, Pedro Gustavo; Silvestre, Luis Enrique; Weak matrix majorization; Elsevier Science Inc; Linear Algebra and its Applications; 403; 7-2005; 343-3680024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379505000741info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.02.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:44:51Zoai:ri.conicet.gov.ar:11336/108527instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:44:51.769CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak matrix majorization |
title |
Weak matrix majorization |
spellingShingle |
Weak matrix majorization Martinez Peria, Francisco Dardo MULTIVARIATE AND DIRECTIONAL MATRIX MAJORIZATIONS ROW STOCHASTIC MATRICES MUTUALLY COMMUTING SELFADJOINT MATRICES CONVEX SETS AND FUNCTIONS |
title_short |
Weak matrix majorization |
title_full |
Weak matrix majorization |
title_fullStr |
Weak matrix majorization |
title_full_unstemmed |
Weak matrix majorization |
title_sort |
Weak matrix majorization |
dc.creator.none.fl_str_mv |
Martinez Peria, Francisco Dardo Massey, Pedro Gustavo Silvestre, Luis Enrique |
author |
Martinez Peria, Francisco Dardo |
author_facet |
Martinez Peria, Francisco Dardo Massey, Pedro Gustavo Silvestre, Luis Enrique |
author_role |
author |
author2 |
Massey, Pedro Gustavo Silvestre, Luis Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MULTIVARIATE AND DIRECTIONAL MATRIX MAJORIZATIONS ROW STOCHASTIC MATRICES MUTUALLY COMMUTING SELFADJOINT MATRICES CONVEX SETS AND FUNCTIONS |
topic |
MULTIVARIATE AND DIRECTIONAL MATRIX MAJORIZATIONS ROW STOCHASTIC MATRICES MUTUALLY COMMUTING SELFADJOINT MATRICES CONVEX SETS AND FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X≻ w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻ s ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻ w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments. Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina Fil: Silvestre, Luis Enrique. University of Texas at Austin; Estados Unidos |
description |
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X≻ w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻ s ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻ w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108527 Martinez Peria, Francisco Dardo; Massey, Pedro Gustavo; Silvestre, Luis Enrique; Weak matrix majorization; Elsevier Science Inc; Linear Algebra and its Applications; 403; 7-2005; 343-368 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108527 |
identifier_str_mv |
Martinez Peria, Francisco Dardo; Massey, Pedro Gustavo; Silvestre, Luis Enrique; Weak matrix majorization; Elsevier Science Inc; Linear Algebra and its Applications; 403; 7-2005; 343-368 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379505000741 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.02.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082959728181248 |
score |
13.22299 |