Weak matrix majorization
- Autores
- Martínez Pería, Francisco Dardo; Massey, Pedro Gustavo; Silvestre, Luis E.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given X,Y∈Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization,X≻wYifthereexistsarow- stochasticmatrixA∈Rn×nsuchthatAX=Y,and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻s ⇒ ≻ ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments.
Facultad de Ciencias Exactas - Materia
-
Matemática
Convex sets and functions
Multivariate and directional matrix majorizations
Mutually commuting selfadjoint matrices
Row stochastic matrices - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83248
Ver los metadatos del registro completo
| id |
SEDICI_64df68a5d369f87009db0305ba2e84b0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83248 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Weak matrix majorizationMartínez Pería, Francisco DardoMassey, Pedro GustavoSilvestre, Luis E.MatemáticaConvex sets and functionsMultivariate and directional matrix majorizationsMutually commuting selfadjoint matricesRow stochastic matricesGiven X,Y∈Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization,X≻wYifthereexistsarow- stochasticmatrixA∈Rn×nsuchthatAX=Y,and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻s ⇒ ≻ ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments.Facultad de Ciencias Exactas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf343-368http://sedici.unlp.edu.ar/handle/10915/83248enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.02.003info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:42Zoai:sedici.unlp.edu.ar:10915/83248Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:42.641SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Weak matrix majorization |
| title |
Weak matrix majorization |
| spellingShingle |
Weak matrix majorization Martínez Pería, Francisco Dardo Matemática Convex sets and functions Multivariate and directional matrix majorizations Mutually commuting selfadjoint matrices Row stochastic matrices |
| title_short |
Weak matrix majorization |
| title_full |
Weak matrix majorization |
| title_fullStr |
Weak matrix majorization |
| title_full_unstemmed |
Weak matrix majorization |
| title_sort |
Weak matrix majorization |
| dc.creator.none.fl_str_mv |
Martínez Pería, Francisco Dardo Massey, Pedro Gustavo Silvestre, Luis E. |
| author |
Martínez Pería, Francisco Dardo |
| author_facet |
Martínez Pería, Francisco Dardo Massey, Pedro Gustavo Silvestre, Luis E. |
| author_role |
author |
| author2 |
Massey, Pedro Gustavo Silvestre, Luis E. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática Convex sets and functions Multivariate and directional matrix majorizations Mutually commuting selfadjoint matrices Row stochastic matrices |
| topic |
Matemática Convex sets and functions Multivariate and directional matrix majorizations Mutually commuting selfadjoint matrices Row stochastic matrices |
| dc.description.none.fl_txt_mv |
Given X,Y∈Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization,X≻wYifthereexistsarow- stochasticmatrixA∈Rn×nsuchthatAX=Y,and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻s ⇒ ≻ ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments. Facultad de Ciencias Exactas |
| description |
Given X,Y∈Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization,X≻wYifthereexistsarow- stochasticmatrixA∈Rn×nsuchthatAX=Y,and consider the relations between this concept, strong majorization (≻s) and directional majorization (≻). It is verified that ≻s ⇒ ≻ ⇒ ≻w, but none of the reciprocal implications is true. Nevertheless, we study the implications ≻w ⇒ ≻s and ≻ ⇒ ≻s under additional hypotheses. We give characterizations of strong, directional and weak matrix majorization in terms of convexity. We also introduce definitions for majorization between Abelian families of selfadjoint matrices, called joint majorizations. They are induced by the previously mentioned matrix majorizations. We obtain descriptions of these relations using convexity arguments. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83248 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83248 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2005.02.003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 343-368 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064133144838144 |
| score |
13.22299 |