On commuting matrices in Max algebra and in classical nonnegative algebra
- Autores
- Katz, Ricardo David; Schneider, Hans; Sergeev, Sergei
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector which directly leads to max analogs and nonnegative analogs of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode.
Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Schneider, Hans. University of Wisconsin; Estados Unidos
Fil: Sergeev, Sergei. The University Of Birmingham (tub); - Materia
-
COMMON EIGENVECTOR
COMMUTING MATRICES
FROBENIUS NORMAL FORM
MAX ALGEBRA
MAX-PLUS ALGEBRA
NONNEGATIVE MATRICES
PERRON-FROBENIUS
TROPICAL ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190093
Ver los metadatos del registro completo
id |
CONICETDig_8fabb65d799564af871b9a2a080ad060 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190093 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On commuting matrices in Max algebra and in classical nonnegative algebraKatz, Ricardo DavidSchneider, HansSergeev, SergeiCOMMON EIGENVECTORCOMMUTING MATRICESFROBENIUS NORMAL FORMMAX ALGEBRAMAX-PLUS ALGEBRANONNEGATIVE MATRICESPERRON-FROBENIUSTROPICAL ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector which directly leads to max analogs and nonnegative analogs of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode.Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Schneider, Hans. University of Wisconsin; Estados UnidosFil: Sergeev, Sergei. The University Of Birmingham (tub);Elsevier Science Inc.2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190093Katz, Ricardo David; Schneider, Hans; Sergeev, Sergei; On commuting matrices in Max algebra and in classical nonnegative algebra; Elsevier Science Inc.; Linear Algebra and its Applications; 436; 2; 9-2012; 276-2920024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379510004350info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2010.08.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:14Zoai:ri.conicet.gov.ar:11336/190093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:14.842CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On commuting matrices in Max algebra and in classical nonnegative algebra |
title |
On commuting matrices in Max algebra and in classical nonnegative algebra |
spellingShingle |
On commuting matrices in Max algebra and in classical nonnegative algebra Katz, Ricardo David COMMON EIGENVECTOR COMMUTING MATRICES FROBENIUS NORMAL FORM MAX ALGEBRA MAX-PLUS ALGEBRA NONNEGATIVE MATRICES PERRON-FROBENIUS TROPICAL ALGEBRA |
title_short |
On commuting matrices in Max algebra and in classical nonnegative algebra |
title_full |
On commuting matrices in Max algebra and in classical nonnegative algebra |
title_fullStr |
On commuting matrices in Max algebra and in classical nonnegative algebra |
title_full_unstemmed |
On commuting matrices in Max algebra and in classical nonnegative algebra |
title_sort |
On commuting matrices in Max algebra and in classical nonnegative algebra |
dc.creator.none.fl_str_mv |
Katz, Ricardo David Schneider, Hans Sergeev, Sergei |
author |
Katz, Ricardo David |
author_facet |
Katz, Ricardo David Schneider, Hans Sergeev, Sergei |
author_role |
author |
author2 |
Schneider, Hans Sergeev, Sergei |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMMON EIGENVECTOR COMMUTING MATRICES FROBENIUS NORMAL FORM MAX ALGEBRA MAX-PLUS ALGEBRA NONNEGATIVE MATRICES PERRON-FROBENIUS TROPICAL ALGEBRA |
topic |
COMMON EIGENVECTOR COMMUTING MATRICES FROBENIUS NORMAL FORM MAX ALGEBRA MAX-PLUS ALGEBRA NONNEGATIVE MATRICES PERRON-FROBENIUS TROPICAL ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector which directly leads to max analogs and nonnegative analogs of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode. Fil: Katz, Ricardo David. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Schneider, Hans. University of Wisconsin; Estados Unidos Fil: Sergeev, Sergei. The University Of Birmingham (tub); |
description |
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector which directly leads to max analogs and nonnegative analogs of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190093 Katz, Ricardo David; Schneider, Hans; Sergeev, Sergei; On commuting matrices in Max algebra and in classical nonnegative algebra; Elsevier Science Inc.; Linear Algebra and its Applications; 436; 2; 9-2012; 276-292 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190093 |
identifier_str_mv |
Katz, Ricardo David; Schneider, Hans; Sergeev, Sergei; On commuting matrices in Max algebra and in classical nonnegative algebra; Elsevier Science Inc.; Linear Algebra and its Applications; 436; 2; 9-2012; 276-292 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379510004350 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2010.08.027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980943515615232 |
score |
12.993085 |