Spherical functions approach to sums of Random Hermitian Matrices
- Autores
- Kuijlaars, Arno B. J.; Román, Pablo Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an approach to sums of random Hermitian matrices via the theory of spher- ical functions for the Gelfand pair (U(n) Herm(n), U(n)). It is inspired by a similar approach of Kieburg and Kösters for products of random matrices. The spherical func- tions have determinantal expressions because of the Harish-Chandra/Itzykson?Zuber integral formula. It leads to remarkably simple expressions for the spherical transform and its inverse. The spherical transform is applied to sums of unitarily invariant ran- dom matrices from polynomial ensembles and the subclass of polynomial ensembles of derivative type (in the additive sense), which turns out to be closed under addition. We finally present additional detailed calculations for the sum with a random matrix from a Laguerre unitary ensemble.
Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; Bélgica
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
SPHERICAL FUNCTIONS
RANDOM MATRICES
SUMS OF RANDOM MATRICES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60242
Ver los metadatos del registro completo
id |
CONICETDig_d3ecfb721e52a3192ab716ddc896101e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spherical functions approach to sums of Random Hermitian MatricesKuijlaars, Arno B. J.Román, Pablo ManuelSPHERICAL FUNCTIONSRANDOM MATRICESSUMS OF RANDOM MATRICEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present an approach to sums of random Hermitian matrices via the theory of spher- ical functions for the Gelfand pair (U(n) Herm(n), U(n)). It is inspired by a similar approach of Kieburg and Kösters for products of random matrices. The spherical func- tions have determinantal expressions because of the Harish-Chandra/Itzykson?Zuber integral formula. It leads to remarkably simple expressions for the spherical transform and its inverse. The spherical transform is applied to sums of unitarily invariant ran- dom matrices from polynomial ensembles and the subclass of polynomial ensembles of derivative type (in the additive sense), which turns out to be closed under addition. We finally present additional detailed calculations for the sum with a random matrix from a Laguerre unitary ensemble.Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; BélgicaFil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60242Kuijlaars, Arno B. J.; Román, Pablo Manuel; Spherical functions approach to sums of Random Hermitian Matrices; Oxford University Press; International Mathematics Research Notices; 7-20171073-79281687-0247CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-lookup/doi/10.1093/imrn/rnx146info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnx146info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:19Zoai:ri.conicet.gov.ar:11336/60242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:20.041CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spherical functions approach to sums of Random Hermitian Matrices |
title |
Spherical functions approach to sums of Random Hermitian Matrices |
spellingShingle |
Spherical functions approach to sums of Random Hermitian Matrices Kuijlaars, Arno B. J. SPHERICAL FUNCTIONS RANDOM MATRICES SUMS OF RANDOM MATRICES |
title_short |
Spherical functions approach to sums of Random Hermitian Matrices |
title_full |
Spherical functions approach to sums of Random Hermitian Matrices |
title_fullStr |
Spherical functions approach to sums of Random Hermitian Matrices |
title_full_unstemmed |
Spherical functions approach to sums of Random Hermitian Matrices |
title_sort |
Spherical functions approach to sums of Random Hermitian Matrices |
dc.creator.none.fl_str_mv |
Kuijlaars, Arno B. J. Román, Pablo Manuel |
author |
Kuijlaars, Arno B. J. |
author_facet |
Kuijlaars, Arno B. J. Román, Pablo Manuel |
author_role |
author |
author2 |
Román, Pablo Manuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
SPHERICAL FUNCTIONS RANDOM MATRICES SUMS OF RANDOM MATRICES |
topic |
SPHERICAL FUNCTIONS RANDOM MATRICES SUMS OF RANDOM MATRICES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an approach to sums of random Hermitian matrices via the theory of spher- ical functions for the Gelfand pair (U(n) Herm(n), U(n)). It is inspired by a similar approach of Kieburg and Kösters for products of random matrices. The spherical func- tions have determinantal expressions because of the Harish-Chandra/Itzykson?Zuber integral formula. It leads to remarkably simple expressions for the spherical transform and its inverse. The spherical transform is applied to sums of unitarily invariant ran- dom matrices from polynomial ensembles and the subclass of polynomial ensembles of derivative type (in the additive sense), which turns out to be closed under addition. We finally present additional detailed calculations for the sum with a random matrix from a Laguerre unitary ensemble. Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; Bélgica Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We present an approach to sums of random Hermitian matrices via the theory of spher- ical functions for the Gelfand pair (U(n) Herm(n), U(n)). It is inspired by a similar approach of Kieburg and Kösters for products of random matrices. The spherical func- tions have determinantal expressions because of the Harish-Chandra/Itzykson?Zuber integral formula. It leads to remarkably simple expressions for the spherical transform and its inverse. The spherical transform is applied to sums of unitarily invariant ran- dom matrices from polynomial ensembles and the subclass of polynomial ensembles of derivative type (in the additive sense), which turns out to be closed under addition. We finally present additional detailed calculations for the sum with a random matrix from a Laguerre unitary ensemble. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60242 Kuijlaars, Arno B. J.; Román, Pablo Manuel; Spherical functions approach to sums of Random Hermitian Matrices; Oxford University Press; International Mathematics Research Notices; 7-2017 1073-7928 1687-0247 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60242 |
identifier_str_mv |
Kuijlaars, Arno B. J.; Román, Pablo Manuel; Spherical functions approach to sums of Random Hermitian Matrices; Oxford University Press; International Mathematics Research Notices; 7-2017 1073-7928 1687-0247 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-lookup/doi/10.1093/imrn/rnx146 info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnx146 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614311631126528 |
score |
13.070432 |