Conjugacy for closed convex sets
- Autores
- Jaume, Daniel Alejandro; Puente, Rubén Oscar
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Even though the polarity is a well defined operation for arbitrary subsets in the Euclidean n-dimensional space, the related operation of conjugacy of faces appears defined in the literature exclusively for either convex bodies containning the origin as interior point and their polar sets, or for closed convex cones. This paper extends the geometry of closed convex cones and convex bodies to unbounded convex sets (and, in a dual way, to those closed convex sets containing the origin at the boundary), not only for the sake of theoretical completeness, but also for the potential applications of this theory in the fields of Convex Programming and Semi-infinite Programming. Introducing the recession cone into the analysis we develop a general theory of conjugacy which, together with the new concept of curvature index of a convex set on a face, allows us to establish a strong result on complementary dimensions of conjugate faces which extends a well-known result on polytopes.
Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina - Materia
-
CONJUGACY
CLOSED
CONVEX
SETS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/240594
Ver los metadatos del registro completo
id |
CONICETDig_25c6494a2c309ee6baa4c5b3ead6b673 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/240594 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conjugacy for closed convex setsJaume, Daniel AlejandroPuente, Rubén OscarCONJUGACYCLOSEDCONVEXSETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Even though the polarity is a well defined operation for arbitrary subsets in the Euclidean n-dimensional space, the related operation of conjugacy of faces appears defined in the literature exclusively for either convex bodies containning the origin as interior point and their polar sets, or for closed convex cones. This paper extends the geometry of closed convex cones and convex bodies to unbounded convex sets (and, in a dual way, to those closed convex sets containing the origin at the boundary), not only for the sake of theoretical completeness, but also for the potential applications of this theory in the fields of Convex Programming and Semi-infinite Programming. Introducing the recession cone into the analysis we develop a general theory of conjugacy which, together with the new concept of curvature index of a convex set on a face, allows us to establish a strong result on complementary dimensions of conjugate faces which extends a well-known result on polytopes.Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; ArgentinaHedelmann Verlag2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/240594Jaume, Daniel Alejandro; Puente, Rubén Oscar; Conjugacy for closed convex sets; Hedelmann Verlag; Beitrage R Algebra Geom; 46; 1; 12-2005; 131-1490138-4821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/BAG/vol.46/no.1/b46h1pue.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:29Zoai:ri.conicet.gov.ar:11336/240594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:29.617CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conjugacy for closed convex sets |
title |
Conjugacy for closed convex sets |
spellingShingle |
Conjugacy for closed convex sets Jaume, Daniel Alejandro CONJUGACY CLOSED CONVEX SETS |
title_short |
Conjugacy for closed convex sets |
title_full |
Conjugacy for closed convex sets |
title_fullStr |
Conjugacy for closed convex sets |
title_full_unstemmed |
Conjugacy for closed convex sets |
title_sort |
Conjugacy for closed convex sets |
dc.creator.none.fl_str_mv |
Jaume, Daniel Alejandro Puente, Rubén Oscar |
author |
Jaume, Daniel Alejandro |
author_facet |
Jaume, Daniel Alejandro Puente, Rubén Oscar |
author_role |
author |
author2 |
Puente, Rubén Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONJUGACY CLOSED CONVEX SETS |
topic |
CONJUGACY CLOSED CONVEX SETS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Even though the polarity is a well defined operation for arbitrary subsets in the Euclidean n-dimensional space, the related operation of conjugacy of faces appears defined in the literature exclusively for either convex bodies containning the origin as interior point and their polar sets, or for closed convex cones. This paper extends the geometry of closed convex cones and convex bodies to unbounded convex sets (and, in a dual way, to those closed convex sets containing the origin at the boundary), not only for the sake of theoretical completeness, but also for the potential applications of this theory in the fields of Convex Programming and Semi-infinite Programming. Introducing the recession cone into the analysis we develop a general theory of conjugacy which, together with the new concept of curvature index of a convex set on a face, allows us to establish a strong result on complementary dimensions of conjugate faces which extends a well-known result on polytopes. Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina |
description |
Even though the polarity is a well defined operation for arbitrary subsets in the Euclidean n-dimensional space, the related operation of conjugacy of faces appears defined in the literature exclusively for either convex bodies containning the origin as interior point and their polar sets, or for closed convex cones. This paper extends the geometry of closed convex cones and convex bodies to unbounded convex sets (and, in a dual way, to those closed convex sets containing the origin at the boundary), not only for the sake of theoretical completeness, but also for the potential applications of this theory in the fields of Convex Programming and Semi-infinite Programming. Introducing the recession cone into the analysis we develop a general theory of conjugacy which, together with the new concept of curvature index of a convex set on a face, allows us to establish a strong result on complementary dimensions of conjugate faces which extends a well-known result on polytopes. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/240594 Jaume, Daniel Alejandro; Puente, Rubén Oscar; Conjugacy for closed convex sets; Hedelmann Verlag; Beitrage R Algebra Geom; 46; 1; 12-2005; 131-149 0138-4821 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/240594 |
identifier_str_mv |
Jaume, Daniel Alejandro; Puente, Rubén Oscar; Conjugacy for closed convex sets; Hedelmann Verlag; Beitrage R Algebra Geom; 46; 1; 12-2005; 131-149 0138-4821 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/BAG/vol.46/no.1/b46h1pue.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hedelmann Verlag |
publisher.none.fl_str_mv |
Hedelmann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269758579277824 |
score |
13.13397 |