Level ε
- Autores
- Marmolejo, Francisco; Menni, Matías
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.
Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs.
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
TOPOS THEORY
AXIOMATIC COHESION
ALGEBRAIC GEOMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129623
Ver los metadatos del registro completo
id |
CONICETDig_5665ad3c0c9be45308315151fcf9482d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129623 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Level εMarmolejo, FranciscoMenni, MatíasTOPOS THEORYAXIOMATIC COHESIONALGEBRAIC GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs.Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; MéxicoFil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaUniversité de Picardie Jules Verne2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129623Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-4770008-0004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volume-lx/#4info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/wp-content/uploads/2019/10/Marmolejo-Menni-LX-4.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:36Zoai:ri.conicet.gov.ar:11336/129623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:37.188CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Level ε |
title |
Level ε |
spellingShingle |
Level ε Marmolejo, Francisco TOPOS THEORY AXIOMATIC COHESION ALGEBRAIC GEOMETRY |
title_short |
Level ε |
title_full |
Level ε |
title_fullStr |
Level ε |
title_full_unstemmed |
Level ε |
title_sort |
Level ε |
dc.creator.none.fl_str_mv |
Marmolejo, Francisco Menni, Matías |
author |
Marmolejo, Francisco |
author_facet |
Marmolejo, Francisco Menni, Matías |
author_role |
author |
author2 |
Menni, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
TOPOS THEORY AXIOMATIC COHESION ALGEBRAIC GEOMETRY |
topic |
TOPOS THEORY AXIOMATIC COHESION ALGEBRAIC GEOMETRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms. Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs. Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129623 Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-477 0008-0004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129623 |
identifier_str_mv |
Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-477 0008-0004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volume-lx/#4 info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/wp-content/uploads/2019/10/Marmolejo-Menni-LX-4.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Université de Picardie Jules Verne |
publisher.none.fl_str_mv |
Université de Picardie Jules Verne |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269042203688960 |
score |
13.13397 |