Level ε

Autores
Marmolejo, Francisco; Menni, Matías
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.
Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs.
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
TOPOS THEORY
AXIOMATIC COHESION
ALGEBRAIC GEOMETRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129623

id CONICETDig_5665ad3c0c9be45308315151fcf9482d
oai_identifier_str oai:ri.conicet.gov.ar:11336/129623
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Level εMarmolejo, FranciscoMenni, MatíasTOPOS THEORYAXIOMATIC COHESIONALGEBRAIC GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs.Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; MéxicoFil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaUniversité de Picardie Jules Verne2019-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129623Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-4770008-0004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volume-lx/#4info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/wp-content/uploads/2019/10/Marmolejo-Menni-LX-4.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:36Zoai:ri.conicet.gov.ar:11336/129623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:37.188CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Level ε
title Level ε
spellingShingle Level ε
Marmolejo, Francisco
TOPOS THEORY
AXIOMATIC COHESION
ALGEBRAIC GEOMETRY
title_short Level ε
title_full Level ε
title_fullStr Level ε
title_full_unstemmed Level ε
title_sort Level ε
dc.creator.none.fl_str_mv Marmolejo, Francisco
Menni, Matías
author Marmolejo, Francisco
author_facet Marmolejo, Francisco
Menni, Matías
author_role author
author2 Menni, Matías
author2_role author
dc.subject.none.fl_str_mv TOPOS THEORY
AXIOMATIC COHESION
ALGEBRAIC GEOMETRY
topic TOPOS THEORY
AXIOMATIC COHESION
ALGEBRAIC GEOMETRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.
Lawvere a observé que certains ‘gros’ topos en géométrie algébrique suggèrent l´existence d’un ‘niveau infinitesimal’, étroitement lié aux algèbres locales de dimension finie. Motivés par cette observation, nous proposons une définition élémentaire de level ε associée à un morphisme géométrique local, établissons quelques propriétés de base pertinentes suggérées par l’intuition géometrique et donnons une description concrete du niveau ε determiné par plusieurs morphismes géometriques pré-cohésifs.
Fil: Marmolejo, Francisco. Universidad Nacional Autónoma de México; México
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description Lawvere has observed that certain ‘gros’ toposes in algebraic geometry suggest the existence of an ‘infinitesimal level’, closely related to finite-dimensional local algebras. Motivated by this observation we propose an elementary definition of level associated to a local geometric morphism, establish some relevant basic properties suggested by geometric intuition, and give concrete descriptions of the level determined by several pre-cohesive geometric morphisms.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129623
Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-477
0008-0004
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129623
identifier_str_mv Marmolejo, Francisco; Menni, Matías; Level ε; Université de Picardie Jules Verne; Cahiers de Topologie Et Geometrie Differentielle Categoriques; 60; 4; 10-2019; 450-477
0008-0004
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/index.php/volume-lx/#4
info:eu-repo/semantics/altIdentifier/url/http://cahierstgdc.com/wp-content/uploads/2019/10/Marmolejo-Menni-LX-4.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Université de Picardie Jules Verne
publisher.none.fl_str_mv Université de Picardie Jules Verne
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269042203688960
score 13.13397