Compactifications of rational maps, and the implicit equations of their images

Autores
Botbol, Nicolas Santiago
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Rational Maps
Implicitization
Syzygies
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16543

id CONICETDig_fe2a6581a391ae96ec3960779b903e86
oai_identifier_str oai:ri.conicet.gov.ar:11336/16543
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Compactifications of rational maps, and the implicit equations of their imagesBotbol, Nicolas SantiagoRational MapsImplicitizationSyzygieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16543Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-10680022-4049enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2010.07.010info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404910001647?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:05Zoai:ri.conicet.gov.ar:11336/16543instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:05.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Compactifications of rational maps, and the implicit equations of their images
title Compactifications of rational maps, and the implicit equations of their images
spellingShingle Compactifications of rational maps, and the implicit equations of their images
Botbol, Nicolas Santiago
Rational Maps
Implicitization
Syzygies
title_short Compactifications of rational maps, and the implicit equations of their images
title_full Compactifications of rational maps, and the implicit equations of their images
title_fullStr Compactifications of rational maps, and the implicit equations of their images
title_full_unstemmed Compactifications of rational maps, and the implicit equations of their images
title_sort Compactifications of rational maps, and the implicit equations of their images
dc.creator.none.fl_str_mv Botbol, Nicolas Santiago
author Botbol, Nicolas Santiago
author_facet Botbol, Nicolas Santiago
author_role author
dc.subject.none.fl_str_mv Rational Maps
Implicitization
Syzygies
topic Rational Maps
Implicitization
Syzygies
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).
publishDate 2010
dc.date.none.fl_str_mv 2010-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16543
Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068
0022-4049
url http://hdl.handle.net/11336/16543
identifier_str_mv Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068
0022-4049
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2010.07.010
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404910001647?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782627005071360
score 12.982451