Compactifications of rational maps, and the implicit equations of their images
- Autores
- Botbol, Nicolas Santiago
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Rational Maps
Implicitization
Syzygies - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16543
Ver los metadatos del registro completo
id |
CONICETDig_fe2a6581a391ae96ec3960779b903e86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16543 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compactifications of rational maps, and the implicit equations of their imagesBotbol, Nicolas SantiagoRational MapsImplicitizationSyzygieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009).Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16543Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-10680022-4049enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2010.07.010info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404910001647?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:05Zoai:ri.conicet.gov.ar:11336/16543instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:05.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compactifications of rational maps, and the implicit equations of their images |
title |
Compactifications of rational maps, and the implicit equations of their images |
spellingShingle |
Compactifications of rational maps, and the implicit equations of their images Botbol, Nicolas Santiago Rational Maps Implicitization Syzygies |
title_short |
Compactifications of rational maps, and the implicit equations of their images |
title_full |
Compactifications of rational maps, and the implicit equations of their images |
title_fullStr |
Compactifications of rational maps, and the implicit equations of their images |
title_full_unstemmed |
Compactifications of rational maps, and the implicit equations of their images |
title_sort |
Compactifications of rational maps, and the implicit equations of their images |
dc.creator.none.fl_str_mv |
Botbol, Nicolas Santiago |
author |
Botbol, Nicolas Santiago |
author_facet |
Botbol, Nicolas Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
Rational Maps Implicitization Syzygies |
topic |
Rational Maps Implicitization Syzygies |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009). Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A n−1 into an (n − 1)- dimensional projective arithmetically Cohen–Macaulay subscheme of some P N . One particular interesting compactification of A n−1 is the toric variety associated to the Newton polytope of the polynomials defining f . We consider two different compactifications for the codomain of f : P n and (P 1 ) n . In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009). |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16543 Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068 0022-4049 |
url |
http://hdl.handle.net/11336/16543 |
identifier_str_mv |
Botbol, Nicolas Santiago; Compactifications of rational maps, and the implicit equations of their images; Elsevier Science; Journal Of Pure And Applied Algebra; 215; 5; 5-2010; 1053-1068 0022-4049 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2010.07.010 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404910001647?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782627005071360 |
score |
12.982451 |