Effective criteria for bigraded birational maps
- Autores
- Botbol, Nicolas Santiago; Busé, Laurent; Chardin, Marc; Hassanzadeh, Seyed Hamid; Simis, Aron; Tran, Quang Hoa
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that became to be known as Jacobian dual matrices. Then, we focus on rational maps from P1×P1 to P2 in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the paper.
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Busé, Laurent. Université Côte d'Azur; Francia
Fil: Chardin, Marc. Institut de Mathématiques de Jussieu; Francia
Fil: Hassanzadeh, Seyed Hamid. Universidade Federal do Rio de Janeiro; Brasil
Fil: Simis, Aron. Universidade Federal de Pernambuco; Brasil
Fil: Tran, Quang Hoa. Institut de Mathématiques de Jussieu; Francia. Hue University's College of Education; Francia - Materia
-
BIGRADED BASE IDEAL
BIGRADED RATIONAL MAPS
BIRATIONALITY CRITERIA
JACOBIAN DUAL RANK
REES ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60061
Ver los metadatos del registro completo
id |
CONICETDig_476b894042375103727239528c76e0da |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effective criteria for bigraded birational mapsBotbol, Nicolas SantiagoBusé, LaurentChardin, MarcHassanzadeh, Seyed HamidSimis, AronTran, Quang HoaBIGRADED BASE IDEALBIGRADED RATIONAL MAPSBIRATIONALITY CRITERIAJACOBIAN DUAL RANKREES ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that became to be known as Jacobian dual matrices. Then, we focus on rational maps from P1×P1 to P2 in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the paper.Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Busé, Laurent. Université Côte d'Azur; FranciaFil: Chardin, Marc. Institut de Mathématiques de Jussieu; FranciaFil: Hassanzadeh, Seyed Hamid. Universidade Federal do Rio de Janeiro; BrasilFil: Simis, Aron. Universidade Federal de Pernambuco; BrasilFil: Tran, Quang Hoa. Institut de Mathématiques de Jussieu; Francia. Hue University's College of Education; FranciaAcademic Press Ltd - Elsevier Science Ltd2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60061Botbol, Nicolas Santiago; Busé, Laurent; Chardin, Marc; Hassanzadeh, Seyed Hamid; Simis, Aron; et al.; Effective criteria for bigraded birational maps; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 81; 7-2017; 69-870747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2016.12.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717116301626info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.07490info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:09Zoai:ri.conicet.gov.ar:11336/60061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:09.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effective criteria for bigraded birational maps |
title |
Effective criteria for bigraded birational maps |
spellingShingle |
Effective criteria for bigraded birational maps Botbol, Nicolas Santiago BIGRADED BASE IDEAL BIGRADED RATIONAL MAPS BIRATIONALITY CRITERIA JACOBIAN DUAL RANK REES ALGEBRAS |
title_short |
Effective criteria for bigraded birational maps |
title_full |
Effective criteria for bigraded birational maps |
title_fullStr |
Effective criteria for bigraded birational maps |
title_full_unstemmed |
Effective criteria for bigraded birational maps |
title_sort |
Effective criteria for bigraded birational maps |
dc.creator.none.fl_str_mv |
Botbol, Nicolas Santiago Busé, Laurent Chardin, Marc Hassanzadeh, Seyed Hamid Simis, Aron Tran, Quang Hoa |
author |
Botbol, Nicolas Santiago |
author_facet |
Botbol, Nicolas Santiago Busé, Laurent Chardin, Marc Hassanzadeh, Seyed Hamid Simis, Aron Tran, Quang Hoa |
author_role |
author |
author2 |
Busé, Laurent Chardin, Marc Hassanzadeh, Seyed Hamid Simis, Aron Tran, Quang Hoa |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BIGRADED BASE IDEAL BIGRADED RATIONAL MAPS BIRATIONALITY CRITERIA JACOBIAN DUAL RANK REES ALGEBRAS |
topic |
BIGRADED BASE IDEAL BIGRADED RATIONAL MAPS BIRATIONALITY CRITERIA JACOBIAN DUAL RANK REES ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that became to be known as Jacobian dual matrices. Then, we focus on rational maps from P1×P1 to P2 in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the paper. Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Busé, Laurent. Université Côte d'Azur; Francia Fil: Chardin, Marc. Institut de Mathématiques de Jussieu; Francia Fil: Hassanzadeh, Seyed Hamid. Universidade Federal do Rio de Janeiro; Brasil Fil: Simis, Aron. Universidade Federal de Pernambuco; Brasil Fil: Tran, Quang Hoa. Institut de Mathématiques de Jussieu; Francia. Hue University's College of Education; Francia |
description |
In this paper, we consider rational maps whose source is a product of two subvarieties, each one being embedded in a projective space. Our main objective is to investigate birationality criteria for such maps. First, a general criterion is given in terms of the rank of a couple of matrices that became to be known as Jacobian dual matrices. Then, we focus on rational maps from P1×P1 to P2 in very low bidegrees and provide new matrix-based birationality criteria by analyzing the syzygies of the defining equations of the map, in particular by looking at the dimension of certain bigraded parts of the syzygy module. Finally, applications of our results to the context of geometric modeling are discussed at the end of the paper. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60061 Botbol, Nicolas Santiago; Busé, Laurent; Chardin, Marc; Hassanzadeh, Seyed Hamid; Simis, Aron; et al.; Effective criteria for bigraded birational maps; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 81; 7-2017; 69-87 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60061 |
identifier_str_mv |
Botbol, Nicolas Santiago; Busé, Laurent; Chardin, Marc; Hassanzadeh, Seyed Hamid; Simis, Aron; et al.; Effective criteria for bigraded birational maps; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 81; 7-2017; 69-87 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2016.12.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717116301626 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1602.07490 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781257861562368 |
score |
12.982451 |