Compactifications of rational maps, and the implicit equations of their images

Autores
Botbol, N.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.
Fuente
J. Pure Appl. Algebra 2011;215(5):1053-1068
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00224049_v215_n5_p1053_Botbol

id BDUBAFCEN_57e2489f6036fa439492e1902f2b8b56
oai_identifier_str paperaa:paper_00224049_v215_n5_p1053_Botbol
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Compactifications of rational maps, and the implicit equations of their imagesBotbol, N.In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_BotbolJ. Pure Appl. Algebra 2011;215(5):1053-1068reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:31Zpaperaa:paper_00224049_v215_n5_p1053_BotbolInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:33.203Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Compactifications of rational maps, and the implicit equations of their images
title Compactifications of rational maps, and the implicit equations of their images
spellingShingle Compactifications of rational maps, and the implicit equations of their images
Botbol, N.
title_short Compactifications of rational maps, and the implicit equations of their images
title_full Compactifications of rational maps, and the implicit equations of their images
title_fullStr Compactifications of rational maps, and the implicit equations of their images
title_full_unstemmed Compactifications of rational maps, and the implicit equations of their images
title_sort Compactifications of rational maps, and the implicit equations of their images
dc.creator.none.fl_str_mv Botbol, N.
author Botbol, N.
author_facet Botbol, N.
author_role author
dc.description.none.fl_txt_mv In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.
description In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_Botbol
url http://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_Botbol
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Pure Appl. Algebra 2011;215(5):1053-1068
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784881827250176
score 12.982451