Compactifications of rational maps, and the implicit equations of their images
- Autores
- Botbol, N.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.
- Fuente
- J. Pure Appl. Algebra 2011;215(5):1053-1068
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00224049_v215_n5_p1053_Botbol
Ver los metadatos del registro completo
| id |
BDUBAFCEN_57e2489f6036fa439492e1902f2b8b56 |
|---|---|
| oai_identifier_str |
paperaa:paper_00224049_v215_n5_p1053_Botbol |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Compactifications of rational maps, and the implicit equations of their imagesBotbol, N.In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_BotbolJ. Pure Appl. Algebra 2011;215(5):1053-1068reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:55Zpaperaa:paper_00224049_v215_n5_p1053_BotbolInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:56.505Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Compactifications of rational maps, and the implicit equations of their images |
| title |
Compactifications of rational maps, and the implicit equations of their images |
| spellingShingle |
Compactifications of rational maps, and the implicit equations of their images Botbol, N. |
| title_short |
Compactifications of rational maps, and the implicit equations of their images |
| title_full |
Compactifications of rational maps, and the implicit equations of their images |
| title_fullStr |
Compactifications of rational maps, and the implicit equations of their images |
| title_full_unstemmed |
Compactifications of rational maps, and the implicit equations of their images |
| title_sort |
Compactifications of rational maps, and the implicit equations of their images |
| dc.creator.none.fl_str_mv |
Botbol, N. |
| author |
Botbol, N. |
| author_facet |
Botbol, N. |
| author_role |
author |
| dc.description.none.fl_txt_mv |
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V. |
| description |
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify An-1 into an (n-1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some PN. One particular interesting compactification of An-1 is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: Pn and (P1)n. In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Busé and Jean-Pierre Jouanolou (2003) [12], Laurent Busé et al. (2009) [9], Laurent Busé and Marc Dohm (2007) [11], Nicolás Botbol et al. (2009) [5] and Nicolás Botbol (2009) [4]. © 2010 Elsevier B.V. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_Botbol |
| url |
http://hdl.handle.net/20.500.12110/paper_00224049_v215_n5_p1053_Botbol |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Pure Appl. Algebra 2011;215(5):1053-1068 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046097875861504 |
| score |
12.976206 |