The implicit equation of a multigraded hypersurface

Autores
Botbol, Nicolas Santiago
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Implicitization
Multigraded Algebra
Representation Matrices
Approximation Complex
Castelnuovo–Mumford Regularity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15925

id CONICETDig_8425cfc3896d538af53aff16bb0df3ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/15925
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The implicit equation of a multigraded hypersurfaceBotbol, Nicolas SantiagoImplicitizationMultigraded AlgebraRepresentation MatricesApproximation ComplexCastelnuovo–Mumford Regularityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15925Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-4010021-8693enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2011.09.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869311005369?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:55:02Zoai:ri.conicet.gov.ar:11336/15925instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:55:03.129CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The implicit equation of a multigraded hypersurface
title The implicit equation of a multigraded hypersurface
spellingShingle The implicit equation of a multigraded hypersurface
Botbol, Nicolas Santiago
Implicitization
Multigraded Algebra
Representation Matrices
Approximation Complex
Castelnuovo–Mumford Regularity
title_short The implicit equation of a multigraded hypersurface
title_full The implicit equation of a multigraded hypersurface
title_fullStr The implicit equation of a multigraded hypersurface
title_full_unstemmed The implicit equation of a multigraded hypersurface
title_sort The implicit equation of a multigraded hypersurface
dc.creator.none.fl_str_mv Botbol, Nicolas Santiago
author Botbol, Nicolas Santiago
author_facet Botbol, Nicolas Santiago
author_role author
dc.subject.none.fl_str_mv Implicitization
Multigraded Algebra
Representation Matrices
Approximation Complex
Castelnuovo–Mumford Regularity
topic Implicitization
Multigraded Algebra
Representation Matrices
Approximation Complex
Castelnuovo–Mumford Regularity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.
publishDate 2011
dc.date.none.fl_str_mv 2011-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15925
Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-401
0021-8693
url http://hdl.handle.net/11336/15925
identifier_str_mv Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-401
0021-8693
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2011.09.019
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869311005369?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606892185649152
score 13.001348