The implicit equation of a multigraded hypersurface
- Autores
- Botbol, Nicolas Santiago
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Implicitization
Multigraded Algebra
Representation Matrices
Approximation Complex
Castelnuovo–Mumford Regularity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15925
Ver los metadatos del registro completo
id |
CONICETDig_8425cfc3896d538af53aff16bb0df3ce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15925 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The implicit equation of a multigraded hypersurfaceBotbol, Nicolas SantiagoImplicitizationMultigraded AlgebraRepresentation MatricesApproximation ComplexCastelnuovo–Mumford Regularityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15925Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-4010021-8693enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2011.09.019info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869311005369?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:55:02Zoai:ri.conicet.gov.ar:11336/15925instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:55:03.129CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The implicit equation of a multigraded hypersurface |
title |
The implicit equation of a multigraded hypersurface |
spellingShingle |
The implicit equation of a multigraded hypersurface Botbol, Nicolas Santiago Implicitization Multigraded Algebra Representation Matrices Approximation Complex Castelnuovo–Mumford Regularity |
title_short |
The implicit equation of a multigraded hypersurface |
title_full |
The implicit equation of a multigraded hypersurface |
title_fullStr |
The implicit equation of a multigraded hypersurface |
title_full_unstemmed |
The implicit equation of a multigraded hypersurface |
title_sort |
The implicit equation of a multigraded hypersurface |
dc.creator.none.fl_str_mv |
Botbol, Nicolas Santiago |
author |
Botbol, Nicolas Santiago |
author_facet |
Botbol, Nicolas Santiago |
author_role |
author |
dc.subject.none.fl_str_mv |
Implicitization Multigraded Algebra Representation Matrices Approximation Complex Castelnuovo–Mumford Regularity |
topic |
Implicitization Multigraded Algebra Representation Matrices Approximation Complex Castelnuovo–Mumford Regularity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space. Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15925 Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-401 0021-8693 |
url |
http://hdl.handle.net/11336/15925 |
identifier_str_mv |
Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-401 0021-8693 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2011.09.019 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869311005369?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606892185649152 |
score |
13.001348 |