The implicitization problem for φ{symbol} : Pn (P1)n + 1
- Autores
- Botbol, N.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.
- Fuente
- J. Algebra 2009;322(11):3878-3895
- Materia
-
Approximation complex
Elimination theory
Implicitization
Koszul complex
Rational map
Syzygy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v322_n11_p3878_Botbol
Ver los metadatos del registro completo
| id |
BDUBAFCEN_b4af35671a406166f9e494fdf883e38f |
|---|---|
| oai_identifier_str |
paperaa:paper_00218693_v322_n11_p3878_Botbol |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
The implicitization problem for φ{symbol} : Pn (P1)n + 1Botbol, N.Approximation complexElimination theoryImplicitizationKoszul complexRational mapSyzygyWe develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_BotbolJ. Algebra 2009;322(11):3878-3895reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:40Zpaperaa:paper_00218693_v322_n11_p3878_BotbolInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:41.998Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| title |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| spellingShingle |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 Botbol, N. Approximation complex Elimination theory Implicitization Koszul complex Rational map Syzygy |
| title_short |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| title_full |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| title_fullStr |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| title_full_unstemmed |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| title_sort |
The implicitization problem for φ{symbol} : Pn (P1)n + 1 |
| dc.creator.none.fl_str_mv |
Botbol, N. |
| author |
Botbol, N. |
| author_facet |
Botbol, N. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Approximation complex Elimination theory Implicitization Koszul complex Rational map Syzygy |
| topic |
Approximation complex Elimination theory Implicitization Koszul complex Rational map Syzygy |
| dc.description.none.fl_txt_mv |
We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved. |
| description |
We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_Botbol |
| url |
http://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_Botbol |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Algebra 2009;322(11):3878-3895 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046092818579456 |
| score |
12.976206 |