The implicitization problem for φ{symbol} : Pn (P1)n + 1

Autores
Botbol, N.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.
Fuente
J. Algebra 2009;322(11):3878-3895
Materia
Approximation complex
Elimination theory
Implicitization
Koszul complex
Rational map
Syzygy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v322_n11_p3878_Botbol

id BDUBAFCEN_b4af35671a406166f9e494fdf883e38f
oai_identifier_str paperaa:paper_00218693_v322_n11_p3878_Botbol
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The implicitization problem for φ{symbol} : Pn (P1)n + 1Botbol, N.Approximation complexElimination theoryImplicitizationKoszul complexRational mapSyzygyWe develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_BotbolJ. Algebra 2009;322(11):3878-3895reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:18Zpaperaa:paper_00218693_v322_n11_p3878_BotbolInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:20.086Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The implicitization problem for φ{symbol} : Pn (P1)n + 1
title The implicitization problem for φ{symbol} : Pn (P1)n + 1
spellingShingle The implicitization problem for φ{symbol} : Pn (P1)n + 1
Botbol, N.
Approximation complex
Elimination theory
Implicitization
Koszul complex
Rational map
Syzygy
title_short The implicitization problem for φ{symbol} : Pn (P1)n + 1
title_full The implicitization problem for φ{symbol} : Pn (P1)n + 1
title_fullStr The implicitization problem for φ{symbol} : Pn (P1)n + 1
title_full_unstemmed The implicitization problem for φ{symbol} : Pn (P1)n + 1
title_sort The implicitization problem for φ{symbol} : Pn (P1)n + 1
dc.creator.none.fl_str_mv Botbol, N.
author Botbol, N.
author_facet Botbol, N.
author_role author
dc.subject.none.fl_str_mv Approximation complex
Elimination theory
Implicitization
Koszul complex
Rational map
Syzygy
topic Approximation complex
Elimination theory
Implicitization
Koszul complex
Rational map
Syzygy
dc.description.none.fl_txt_mv We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.
description We develop in this paper methods for studying the implicitization problem for a rational map φ{symbol} : Pn (P1)n + 1 defining a hypersurface in (P1)n + 1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give a geometric interpretation for the acyclicity conditions. Under suitable hypotheses, these techniques enable us to obtain the implicit equation, up to a power, and up to some extra factor. We give algebraic and geometric conditions for determining when the computed equation defines the scheme theoretic image of φ{symbol}, and, what are the extra varieties that appear. We also give some applications to the problem of computing sparse discriminants. © 2009 Elsevier Inc. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_Botbol
url http://hdl.handle.net/20.500.12110/paper_00218693_v322_n11_p3878_Botbol
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2009;322(11):3878-3895
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784877469368320
score 12.982451