Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling
- Autores
- Yannibelli, Virginia Daniela; Amandi, Analia Adriana
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Project Scheduling
Human Resource Assignment
Multi-Skilled Resources
Hybrid Evolutionary Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6838
Ver los metadatos del registro completo
id |
CONICETDig_fe04fabbc2ae8d4805e9ab4476ec6dac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6838 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project SchedulingYannibelli, Virginia DanielaAmandi, Analia AdrianaProject SchedulingHuman Resource AssignmentMulti-Skilled ResourcesHybrid Evolutionary Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6838Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling; Springer; Lecture Notes In Computer Science; 9375; 9-2015; 340-3510302-9743enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-24834-9_40info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-24834-9_40info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:15Zoai:ri.conicet.gov.ar:11336/6838instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:15.471CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
title |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
spellingShingle |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling Yannibelli, Virginia Daniela Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
title_short |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
title_full |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
title_fullStr |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
title_full_unstemmed |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
title_sort |
Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author_role |
author |
author2 |
Amandi, Analia Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
topic |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6838 Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling; Springer; Lecture Notes In Computer Science; 9375; 9-2015; 340-351 0302-9743 |
url |
http://hdl.handle.net/11336/6838 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling; Springer; Lecture Notes In Computer Science; 9375; 9-2015; 340-351 0302-9743 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-24834-9_40 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-24834-9_40 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613886358061056 |
score |
13.069144 |