Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes
- Autores
- Yannibelli, Virginia Daniela; Amandi, Analia Adriana
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we present a hybrid evolutionary algorithm with self-adaptive processes to solve a known project scheduling problem. This problem takes into consideration an optimization objective priority for project managers: to maximize the effectiveness of the sets of human resources assigned to the project activities. The hybrid evolutionary algorithm integrates self-adaptive processes with the aim of enhancing the evolutionary search. The behavior of these processes is self-adaptive according to the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on six different instance sets and then is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results show that the hybrid evolutionary algorithm considerably outperforms the previous algorithm.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Project Scheduling
Human Resource Assignment
Multi-Skilled Resources
Hybrid Evolutionary Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6836
Ver los metadatos del registro completo
id |
CONICETDig_d55b7c8c4b2836373f04ce1e42691790 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6836 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive ProcessesYannibelli, Virginia DanielaAmandi, Analia AdrianaProject SchedulingHuman Resource AssignmentMulti-Skilled ResourcesHybrid Evolutionary Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we present a hybrid evolutionary algorithm with self-adaptive processes to solve a known project scheduling problem. This problem takes into consideration an optimization objective priority for project managers: to maximize the effectiveness of the sets of human resources assigned to the project activities. The hybrid evolutionary algorithm integrates self-adaptive processes with the aim of enhancing the evolutionary search. The behavior of these processes is self-adaptive according to the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on six different instance sets and then is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results show that the hybrid evolutionary algorithm considerably outperforms the previous algorithm.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6836Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes; Springer; Lecture Notes In Computer Science; 9413; 11-2015; 401-4120302-9743enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-27060-9_33info:eu-repo/semantics/altIdentifier/url/10.1007/978-3-319-27060-9_33info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-27060-9_33info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:30Zoai:ri.conicet.gov.ar:11336/6836instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:31.182CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
title |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
spellingShingle |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes Yannibelli, Virginia Daniela Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
title_short |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
title_full |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
title_fullStr |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
title_full_unstemmed |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
title_sort |
Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author_role |
author |
author2 |
Amandi, Analia Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
topic |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we present a hybrid evolutionary algorithm with self-adaptive processes to solve a known project scheduling problem. This problem takes into consideration an optimization objective priority for project managers: to maximize the effectiveness of the sets of human resources assigned to the project activities. The hybrid evolutionary algorithm integrates self-adaptive processes with the aim of enhancing the evolutionary search. The behavior of these processes is self-adaptive according to the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on six different instance sets and then is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results show that the hybrid evolutionary algorithm considerably outperforms the previous algorithm. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
In this paper, we present a hybrid evolutionary algorithm with self-adaptive processes to solve a known project scheduling problem. This problem takes into consideration an optimization objective priority for project managers: to maximize the effectiveness of the sets of human resources assigned to the project activities. The hybrid evolutionary algorithm integrates self-adaptive processes with the aim of enhancing the evolutionary search. The behavior of these processes is self-adaptive according to the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on six different instance sets and then is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results show that the hybrid evolutionary algorithm considerably outperforms the previous algorithm. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6836 Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes; Springer; Lecture Notes In Computer Science; 9413; 11-2015; 401-412 0302-9743 |
url |
http://hdl.handle.net/11336/6836 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Scheduling Projects by a Hybrid Evolutionary Algorithm with Self-Adaptive Processes; Springer; Lecture Notes In Computer Science; 9413; 11-2015; 401-412 0302-9743 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-27060-9_33 info:eu-repo/semantics/altIdentifier/url/10.1007/978-3-319-27060-9_33 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-27060-9_33 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614289084645376 |
score |
13.069144 |