A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem
- Autores
- Amandi, Analia Adriana; Yannibelli, Virginia Daniela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Project Scheduling
Human Resource Assignment
Multi-Skilled Resources
Hybrid Evolutionary Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6798
Ver los metadatos del registro completo
id |
CONICETDig_431bf271c1efcad7604cfb166476ae71 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6798 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling ProblemAmandi, Analia AdrianaYannibelli, Virginia DanielaProject SchedulingHuman Resource AssignmentMulti-Skilled ResourcesHybrid Evolutionary Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6798Amandi, Analia Adriana; Yannibelli, Virginia Daniela; A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem; Springer; Lecture Notes In Computer Science; 8669; 9-2014; 412-4230302-9743enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10840-7_50info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10840-7_50info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:56Zoai:ri.conicet.gov.ar:11336/6798instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:56.958CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
title |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
spellingShingle |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem Amandi, Analia Adriana Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
title_short |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
title_full |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
title_fullStr |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
title_full_unstemmed |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
title_sort |
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem |
dc.creator.none.fl_str_mv |
Amandi, Analia Adriana Yannibelli, Virginia Daniela |
author |
Amandi, Analia Adriana |
author_facet |
Amandi, Analia Adriana Yannibelli, Virginia Daniela |
author_role |
author |
author2 |
Yannibelli, Virginia Daniela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
topic |
Project Scheduling Human Resource Assignment Multi-Skilled Resources Hybrid Evolutionary Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms. Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
In this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6798 Amandi, Analia Adriana; Yannibelli, Virginia Daniela; A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem; Springer; Lecture Notes In Computer Science; 8669; 9-2014; 412-423 0302-9743 |
url |
http://hdl.handle.net/11336/6798 |
identifier_str_mv |
Amandi, Analia Adriana; Yannibelli, Virginia Daniela; A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem; Springer; Lecture Notes In Computer Science; 8669; 9-2014; 412-423 0302-9743 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10840-7_50 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10840-7_50 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613295073394688 |
score |
13.069144 |