Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem

Autores
Yannibelli, Virginia Daniela; Amandi, Analia Adriana
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
Multi-Objective Project Scheduling
Multi-Objective Hybrid Algorithm
Multi-Objective Simulated Annealling Algorithm
Multi-Objective Evolutionary Algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33479

id CONICETDig_77a93d0884f4d64cec32f6c6504266b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/33479
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problemYannibelli, Virginia DanielaAmandi, Analia AdrianaMulti-Objective Project SchedulingMulti-Objective Hybrid AlgorithmMulti-Objective Simulated Annealling AlgorithmMulti-Objective Evolutionary Algorithmhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaElsevier2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33479Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-24340957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.058info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011827info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:18Zoai:ri.conicet.gov.ar:11336/33479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:18.412CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
title Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
spellingShingle Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
Yannibelli, Virginia Daniela
Multi-Objective Project Scheduling
Multi-Objective Hybrid Algorithm
Multi-Objective Simulated Annealling Algorithm
Multi-Objective Evolutionary Algorithm
title_short Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
title_full Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
title_fullStr Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
title_full_unstemmed Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
title_sort Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
dc.creator.none.fl_str_mv Yannibelli, Virginia Daniela
Amandi, Analia Adriana
author Yannibelli, Virginia Daniela
author_facet Yannibelli, Virginia Daniela
Amandi, Analia Adriana
author_role author
author2 Amandi, Analia Adriana
author2_role author
dc.subject.none.fl_str_mv Multi-Objective Project Scheduling
Multi-Objective Hybrid Algorithm
Multi-Objective Simulated Annealling Algorithm
Multi-Objective Evolutionary Algorithm
topic Multi-Objective Project Scheduling
Multi-Objective Hybrid Algorithm
Multi-Objective Simulated Annealling Algorithm
Multi-Objective Evolutionary Algorithm
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.
publishDate 2012
dc.date.none.fl_str_mv 2012-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33479
Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-2434
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33479
identifier_str_mv Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-2434
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.058
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011827
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269904889184256
score 13.13397