Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
- Autores
- Yannibelli, Virginia Daniela; Amandi, Analia Adriana
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
Multi-Objective Project Scheduling
Multi-Objective Hybrid Algorithm
Multi-Objective Simulated Annealling Algorithm
Multi-Objective Evolutionary Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33479
Ver los metadatos del registro completo
id |
CONICETDig_77a93d0884f4d64cec32f6c6504266b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33479 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problemYannibelli, Virginia DanielaAmandi, Analia AdrianaMulti-Objective Project SchedulingMulti-Objective Hybrid AlgorithmMulti-Objective Simulated Annealling AlgorithmMulti-Objective Evolutionary Algorithmhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaElsevier2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33479Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-24340957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.058info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011827info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:18Zoai:ri.conicet.gov.ar:11336/33479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:18.412CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
title |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
spellingShingle |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem Yannibelli, Virginia Daniela Multi-Objective Project Scheduling Multi-Objective Hybrid Algorithm Multi-Objective Simulated Annealling Algorithm Multi-Objective Evolutionary Algorithm |
title_short |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
title_full |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
title_fullStr |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
title_full_unstemmed |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
title_sort |
Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author_role |
author |
author2 |
Amandi, Analia Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Multi-Objective Project Scheduling Multi-Objective Hybrid Algorithm Multi-Objective Simulated Annealling Algorithm Multi-Objective Evolutionary Algorithm |
topic |
Multi-Objective Project Scheduling Multi-Objective Hybrid Algorithm Multi-Objective Simulated Annealling Algorithm Multi-Objective Evolutionary Algorithm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33479 Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-2434 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33479 |
identifier_str_mv |
Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-2434 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.058 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011827 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269904889184256 |
score |
13.13397 |