A knowledge-based evolutionary assistant to software development project scheduling

Autores
Yannibelli, Virginia Daniela; Amandi, Analia Adriana
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
GENETIC ALGORITHMS
HETEROGENEOUS EFFECTIVITIES
HUMAN RESOURCE ASSIGNMENT
MULTI-SKILLED RESOURCES
PROJECT SCHEDULING
SOFTWARE PROJECTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97349

id CONICETDig_1c3a73b081f2c439ca46d42eedd13e03
oai_identifier_str oai:ri.conicet.gov.ar:11336/97349
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A knowledge-based evolutionary assistant to software development project schedulingYannibelli, Virginia DanielaAmandi, Analia AdrianaGENETIC ALGORITHMSHETEROGENEOUS EFFECTIVITIESHUMAN RESOURCE ASSIGNMENTMULTI-SKILLED RESOURCESPROJECT SCHEDULINGSOFTWARE PROJECTShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaPergamon-Elsevier Science Ltd2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97349Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-84130957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.01.035info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:33Zoai:ri.conicet.gov.ar:11336/97349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:33.669CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A knowledge-based evolutionary assistant to software development project scheduling
title A knowledge-based evolutionary assistant to software development project scheduling
spellingShingle A knowledge-based evolutionary assistant to software development project scheduling
Yannibelli, Virginia Daniela
GENETIC ALGORITHMS
HETEROGENEOUS EFFECTIVITIES
HUMAN RESOURCE ASSIGNMENT
MULTI-SKILLED RESOURCES
PROJECT SCHEDULING
SOFTWARE PROJECTS
title_short A knowledge-based evolutionary assistant to software development project scheduling
title_full A knowledge-based evolutionary assistant to software development project scheduling
title_fullStr A knowledge-based evolutionary assistant to software development project scheduling
title_full_unstemmed A knowledge-based evolutionary assistant to software development project scheduling
title_sort A knowledge-based evolutionary assistant to software development project scheduling
dc.creator.none.fl_str_mv Yannibelli, Virginia Daniela
Amandi, Analia Adriana
author Yannibelli, Virginia Daniela
author_facet Yannibelli, Virginia Daniela
Amandi, Analia Adriana
author_role author
author2 Amandi, Analia Adriana
author2_role author
dc.subject.none.fl_str_mv GENETIC ALGORITHMS
HETEROGENEOUS EFFECTIVITIES
HUMAN RESOURCE ASSIGNMENT
MULTI-SKILLED RESOURCES
PROJECT SCHEDULING
SOFTWARE PROJECTS
topic GENETIC ALGORITHMS
HETEROGENEOUS EFFECTIVITIES
HUMAN RESOURCE ASSIGNMENT
MULTI-SKILLED RESOURCES
PROJECT SCHEDULING
SOFTWARE PROJECTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97349
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97349
identifier_str_mv Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.01.035
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614326311190528
score 13.069144