A knowledge-based evolutionary assistant to software development project scheduling
- Autores
- Yannibelli, Virginia Daniela; Amandi, Analia Adriana
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
GENETIC ALGORITHMS
HETEROGENEOUS EFFECTIVITIES
HUMAN RESOURCE ASSIGNMENT
MULTI-SKILLED RESOURCES
PROJECT SCHEDULING
SOFTWARE PROJECTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/97349
Ver los metadatos del registro completo
id |
CONICETDig_1c3a73b081f2c439ca46d42eedd13e03 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/97349 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A knowledge-based evolutionary assistant to software development project schedulingYannibelli, Virginia DanielaAmandi, Analia AdrianaGENETIC ALGORITHMSHETEROGENEOUS EFFECTIVITIESHUMAN RESOURCE ASSIGNMENTMULTI-SKILLED RESOURCESPROJECT SCHEDULINGSOFTWARE PROJECTShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaPergamon-Elsevier Science Ltd2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97349Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-84130957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.01.035info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:33Zoai:ri.conicet.gov.ar:11336/97349instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:33.669CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A knowledge-based evolutionary assistant to software development project scheduling |
title |
A knowledge-based evolutionary assistant to software development project scheduling |
spellingShingle |
A knowledge-based evolutionary assistant to software development project scheduling Yannibelli, Virginia Daniela GENETIC ALGORITHMS HETEROGENEOUS EFFECTIVITIES HUMAN RESOURCE ASSIGNMENT MULTI-SKILLED RESOURCES PROJECT SCHEDULING SOFTWARE PROJECTS |
title_short |
A knowledge-based evolutionary assistant to software development project scheduling |
title_full |
A knowledge-based evolutionary assistant to software development project scheduling |
title_fullStr |
A knowledge-based evolutionary assistant to software development project scheduling |
title_full_unstemmed |
A knowledge-based evolutionary assistant to software development project scheduling |
title_sort |
A knowledge-based evolutionary assistant to software development project scheduling |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author_role |
author |
author2 |
Amandi, Analia Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
GENETIC ALGORITHMS HETEROGENEOUS EFFECTIVITIES HUMAN RESOURCE ASSIGNMENT MULTI-SKILLED RESOURCES PROJECT SCHEDULING SOFTWARE PROJECTS |
topic |
GENETIC ALGORITHMS HETEROGENEOUS EFFECTIVITIES HUMAN RESOURCE ASSIGNMENT MULTI-SKILLED RESOURCES PROJECT SCHEDULING SOFTWARE PROJECTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
The scheduling of software development projects is a central, non-trivial and costly task for software companies. This task is not exempt of erroneous decisions caused by human limitations inherent to project managers. In this paper, we propose a knowledge-based evolutionary approach with the aim of assisting to project managers at the early stage of scheduling software projects. Given a software project to be scheduled, the approach automatically designs feasible schedules for the project, and evaluates each designed schedule according to an optimization objective that is priority for managers at the mentioned stage. Our objective is to assign the most effective set of employees to each project activity. For this reason, the evaluation of designed schedules in our approach is developed based on available knowledge about the competence of the employees involved in each schedule. This knowledge arises from historical information about the participation of the employees in already executed projects. In order to evaluate the performance of our evolutionary approach, we present computational experiments developed over eight different sets of problem instances. The obtained results are promising since this approach has reached an optimal level of effectivity on seven of the eight mentioned sets, and a high level of effectivity on the remaining set. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/97349 Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/97349 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A knowledge-based evolutionary assistant to software development project scheduling; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 38; 7; 7-2011; 8403-8413 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.01.035 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417411000558 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614326311190528 |
score |
13.069144 |