Detecting pedestrians on a Movement Feature Space
- Autores
- Negri, Pablo Augusto; Goussies, Norberto Adrián; Lotito, Pablo Andres
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10−1 false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 480 pixel captures. This is therefore a fast and reliable pedestrian detector.
Fil: Negri, Pablo Augusto. Universidad Arg.de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Pedestrian Detection
Motion Detection
Histograms of Oriented Level Lines
Adaboost Cascade
Linear Svm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21291
Ver los metadatos del registro completo
id |
CONICETDig_f8d35b161f9ec37e74dc328e4028af02 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21291 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detecting pedestrians on a Movement Feature SpaceNegri, Pablo AugustoGoussies, Norberto AdriánLotito, Pablo AndresPedestrian DetectionMotion DetectionHistograms of Oriented Level LinesAdaboost CascadeLinear Svmhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10−1 false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 480 pixel captures. This is therefore a fast and reliable pedestrian detector.Fil: Negri, Pablo Augusto. Universidad Arg.de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21291Negri, Pablo Augusto; Goussies, Norberto Adrián; Lotito, Pablo Andres; Detecting pedestrians on a Movement Feature Space ; Elsevier; Pattern Recognition; 47; 1; 6-2013; 56-710031-3203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.05.020info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002446info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:35Zoai:ri.conicet.gov.ar:11336/21291instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:35.586CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detecting pedestrians on a Movement Feature Space |
title |
Detecting pedestrians on a Movement Feature Space |
spellingShingle |
Detecting pedestrians on a Movement Feature Space Negri, Pablo Augusto Pedestrian Detection Motion Detection Histograms of Oriented Level Lines Adaboost Cascade Linear Svm |
title_short |
Detecting pedestrians on a Movement Feature Space |
title_full |
Detecting pedestrians on a Movement Feature Space |
title_fullStr |
Detecting pedestrians on a Movement Feature Space |
title_full_unstemmed |
Detecting pedestrians on a Movement Feature Space |
title_sort |
Detecting pedestrians on a Movement Feature Space |
dc.creator.none.fl_str_mv |
Negri, Pablo Augusto Goussies, Norberto Adrián Lotito, Pablo Andres |
author |
Negri, Pablo Augusto |
author_facet |
Negri, Pablo Augusto Goussies, Norberto Adrián Lotito, Pablo Andres |
author_role |
author |
author2 |
Goussies, Norberto Adrián Lotito, Pablo Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Pedestrian Detection Motion Detection Histograms of Oriented Level Lines Adaboost Cascade Linear Svm |
topic |
Pedestrian Detection Motion Detection Histograms of Oriented Level Lines Adaboost Cascade Linear Svm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10−1 false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 480 pixel captures. This is therefore a fast and reliable pedestrian detector. Fil: Negri, Pablo Augusto. Universidad Arg.de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This work aims at detecting pedestrians in surveillance video sequences. A pre-processing step detects motion regions on the image using a scene background model based on level lines, which generates a Movement Feature Space, and a family of oriented histogram descriptors. A cascade of boosted classifiers generates pedestrian hypotheses using this feature space. Then, a linear Support Vector Machine validates the hypotheses that are likeliest to contain a person. The combination of the three detection phases reduces false positives, preserving the majority of pedestrians. The system tests conducted in our dataset, which contain low-resolution pedestrians, achieved a maximum performance of 25.5% miss rate with a rate of 10−1 false positives per image. This value is comparable to the best detection values for this kind of images. In addition, the processing time is between 2 and 6 fps on 640 480 pixel captures. This is therefore a fast and reliable pedestrian detector. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21291 Negri, Pablo Augusto; Goussies, Norberto Adrián; Lotito, Pablo Andres; Detecting pedestrians on a Movement Feature Space ; Elsevier; Pattern Recognition; 47; 1; 6-2013; 56-71 0031-3203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21291 |
identifier_str_mv |
Negri, Pablo Augusto; Goussies, Norberto Adrián; Lotito, Pablo Andres; Detecting pedestrians on a Movement Feature Space ; Elsevier; Pattern Recognition; 47; 1; 6-2013; 56-71 0031-3203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2013.05.020 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0031320313002446 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613312100171776 |
score |
13.070432 |