Pedestrian detection on CAVIAR dataset using a movement feature space
- Autores
- Negri, Pablo; Lotito, Pablo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Pedestrian detection
Level Lines
Movement Feature Space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123930
Ver los metadatos del registro completo
id |
SEDICI_bf7ebfa77b3f1808e0037a7786505b77 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123930 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Pedestrian detection on CAVIAR dataset using a movement feature spaceNegri, PabloLotito, PabloCiencias InformáticasPedestrian detectionLevel LinesMovement Feature SpaceThis work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf216-227http://sedici.unlp.edu.ar/handle/10915/123930enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/19_AST_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:43Zoai:sedici.unlp.edu.ar:10915/123930Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:43.473SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Pedestrian detection on CAVIAR dataset using a movement feature space |
title |
Pedestrian detection on CAVIAR dataset using a movement feature space |
spellingShingle |
Pedestrian detection on CAVIAR dataset using a movement feature space Negri, Pablo Ciencias Informáticas Pedestrian detection Level Lines Movement Feature Space |
title_short |
Pedestrian detection on CAVIAR dataset using a movement feature space |
title_full |
Pedestrian detection on CAVIAR dataset using a movement feature space |
title_fullStr |
Pedestrian detection on CAVIAR dataset using a movement feature space |
title_full_unstemmed |
Pedestrian detection on CAVIAR dataset using a movement feature space |
title_sort |
Pedestrian detection on CAVIAR dataset using a movement feature space |
dc.creator.none.fl_str_mv |
Negri, Pablo Lotito, Pablo |
author |
Negri, Pablo |
author_facet |
Negri, Pablo Lotito, Pablo |
author_role |
author |
author2 |
Lotito, Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Pedestrian detection Level Lines Movement Feature Space |
topic |
Ciencias Informáticas Pedestrian detection Level Lines Movement Feature Space |
dc.description.none.fl_txt_mv |
This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset. Sociedad Argentina de Informática e Investigación Operativa |
description |
This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123930 |
url |
http://sedici.unlp.edu.ar/handle/10915/123930 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/19_AST_2012.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 216-227 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616175946825728 |
score |
13.070432 |