Pedestrian detection on CAVIAR dataset using a movement feature space

Autores
Negri, Pablo; Lotito, Pablo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Pedestrian detection
Level Lines
Movement Feature Space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123930

id SEDICI_bf7ebfa77b3f1808e0037a7786505b77
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123930
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Pedestrian detection on CAVIAR dataset using a movement feature spaceNegri, PabloLotito, PabloCiencias InformáticasPedestrian detectionLevel LinesMovement Feature SpaceThis work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf216-227http://sedici.unlp.edu.ar/handle/10915/123930enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/19_AST_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:43Zoai:sedici.unlp.edu.ar:10915/123930Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:43.473SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Pedestrian detection on CAVIAR dataset using a movement feature space
title Pedestrian detection on CAVIAR dataset using a movement feature space
spellingShingle Pedestrian detection on CAVIAR dataset using a movement feature space
Negri, Pablo
Ciencias Informáticas
Pedestrian detection
Level Lines
Movement Feature Space
title_short Pedestrian detection on CAVIAR dataset using a movement feature space
title_full Pedestrian detection on CAVIAR dataset using a movement feature space
title_fullStr Pedestrian detection on CAVIAR dataset using a movement feature space
title_full_unstemmed Pedestrian detection on CAVIAR dataset using a movement feature space
title_sort Pedestrian detection on CAVIAR dataset using a movement feature space
dc.creator.none.fl_str_mv Negri, Pablo
Lotito, Pablo
author Negri, Pablo
author_facet Negri, Pablo
Lotito, Pablo
author_role author
author2 Lotito, Pablo
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Pedestrian detection
Level Lines
Movement Feature Space
topic Ciencias Informáticas
Pedestrian detection
Level Lines
Movement Feature Space
dc.description.none.fl_txt_mv This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.
Sociedad Argentina de Informática e Investigación Operativa
description This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest is carried out by a Support Vector Machine classifier. Results rise to 81 % of good detection rate, having 0.6 false alarms per image on average on the FRONT VIEW CAVIAR dataset.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123930
url http://sedici.unlp.edu.ar/handle/10915/123930
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/19_AST_2012.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
216-227
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616175946825728
score 13.070432