Estimating the queue length at street intersections by using a movement feature space approach

Autores
Negri, Pablo Augusto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.
Fil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Vehicle Detection
Movement Feature Space
Histogram of Oriented Level Lines
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/35865

id CONICETDig_4b75384f3f24653a356bb29ab5afc7ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/35865
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimating the queue length at street intersections by using a movement feature space approachNegri, Pablo AugustoVehicle DetectionMovement Feature SpaceHistogram of Oriented Level Lineshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.Fil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitution of Engineering and Technology2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/35865Negri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-4161751-96591751-9667CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1049/iet-ipr.2013.0496info:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2013.0496info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:12Zoai:ri.conicet.gov.ar:11336/35865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:12.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimating the queue length at street intersections by using a movement feature space approach
title Estimating the queue length at street intersections by using a movement feature space approach
spellingShingle Estimating the queue length at street intersections by using a movement feature space approach
Negri, Pablo Augusto
Vehicle Detection
Movement Feature Space
Histogram of Oriented Level Lines
title_short Estimating the queue length at street intersections by using a movement feature space approach
title_full Estimating the queue length at street intersections by using a movement feature space approach
title_fullStr Estimating the queue length at street intersections by using a movement feature space approach
title_full_unstemmed Estimating the queue length at street intersections by using a movement feature space approach
title_sort Estimating the queue length at street intersections by using a movement feature space approach
dc.creator.none.fl_str_mv Negri, Pablo Augusto
author Negri, Pablo Augusto
author_facet Negri, Pablo Augusto
author_role author
dc.subject.none.fl_str_mv Vehicle Detection
Movement Feature Space
Histogram of Oriented Level Lines
topic Vehicle Detection
Movement Feature Space
Histogram of Oriented Level Lines
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.
Fil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/35865
Negri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-416
1751-9659
1751-9667
CONICET Digital
CONICET
url http://hdl.handle.net/11336/35865
identifier_str_mv Negri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-416
1751-9659
1751-9667
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-ipr.2013.0496
info:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2013.0496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Institution of Engineering and Technology
publisher.none.fl_str_mv Institution of Engineering and Technology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613988889919488
score 13.070432