Automatic detection of pipe-flange reflections in GPR data sections using supervised learning
- Autores
- Bordón, Pablo; Bonomo, Nestor Eduardo; Martinelli, Hilda Patricia
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ground Penetrating radar (GPR) is a method widely used to study the near-surface subsoil. Many GPR applications require the acquisition of large volumes of data. In these cases, the processing and analysis of the data involve considerable amounts of time and human effort, and the possibility of errors increases. Considering this, the implementation of dependable methods for the automatic detection of GPR response-patterns of the targeted structures becomes clear, because they can contribute to the efficiency and reliability of the interpretation. In this work, we present three methods for automatic detection of pipe-flange signals in constant-offset reflection-GPR images. These methods were obtained using well-known supervised machine learning techniques, and data acquired during a previous study of an extensive section of a pipeline. The first two methods are based on support vector machines (SVM), combined with the image descriptors local binary patterns (LBP) and histogram of oriented gradients (HOG), and the third, on artificial neural networks (ANN). The training and validation of these types of algorithms require large numbers of positive and negative samples. From the mentioned study, we had only 16 experimental flange-patterns. Then, in this work, they were taken as references, together with available documentation on the geometry and materials of the pipe and flanges, for building a broad database of synthetic patterns corresponding to different depths of the pipe and characteristics of the environment. These patterns constitute the set of positive samples used for training and validation. They were also used for the final test of the algorithms. The negative samples for the three stages were directly extracted from the profiles. The results obtained indicate the usefulness of the proposed methodologies to identify the flanges. The best performance corresponded to the ANN, closely followed by SVM combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates of false positive (FP) predictions for the validation and test samples of about 3%, and rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% for the test samples. Greater FN rates for the test experimental samples, in comparison to those obtained for the validation synthetic samples, were also observed for both SVM algorithms. The detection failures mainly originated in that some complex features of the experimental flange responses could not be appropriately reproduced through the performed numerical simulations, and therefore, some of the patterns were not satisfactorily represented in the sets of positive samples used for training and validation. A first option to improve the results is to obtain a significant number and variety of experimental samples of flange responses and use them to train and validate the algorithms. Other alternatives are to use more sophisticated numerical simulation environments and to find more efficient attributes of the data.
Fil: Bordón, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Martinelli, Hilda Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
ANN
AUTOMATIC DETECTION
GPR
PIPE-FLANGE
SVM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/147424
Ver los metadatos del registro completo
id |
CONICETDig_446e411604809e29d0dea582161f4b2b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/147424 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learningBordón, PabloBonomo, Nestor EduardoMartinelli, Hilda PatriciaANNAUTOMATIC DETECTIONGPRPIPE-FLANGESVMhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Ground Penetrating radar (GPR) is a method widely used to study the near-surface subsoil. Many GPR applications require the acquisition of large volumes of data. In these cases, the processing and analysis of the data involve considerable amounts of time and human effort, and the possibility of errors increases. Considering this, the implementation of dependable methods for the automatic detection of GPR response-patterns of the targeted structures becomes clear, because they can contribute to the efficiency and reliability of the interpretation. In this work, we present three methods for automatic detection of pipe-flange signals in constant-offset reflection-GPR images. These methods were obtained using well-known supervised machine learning techniques, and data acquired during a previous study of an extensive section of a pipeline. The first two methods are based on support vector machines (SVM), combined with the image descriptors local binary patterns (LBP) and histogram of oriented gradients (HOG), and the third, on artificial neural networks (ANN). The training and validation of these types of algorithms require large numbers of positive and negative samples. From the mentioned study, we had only 16 experimental flange-patterns. Then, in this work, they were taken as references, together with available documentation on the geometry and materials of the pipe and flanges, for building a broad database of synthetic patterns corresponding to different depths of the pipe and characteristics of the environment. These patterns constitute the set of positive samples used for training and validation. They were also used for the final test of the algorithms. The negative samples for the three stages were directly extracted from the profiles. The results obtained indicate the usefulness of the proposed methodologies to identify the flanges. The best performance corresponded to the ANN, closely followed by SVM combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates of false positive (FP) predictions for the validation and test samples of about 3%, and rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% for the test samples. Greater FN rates for the test experimental samples, in comparison to those obtained for the validation synthetic samples, were also observed for both SVM algorithms. The detection failures mainly originated in that some complex features of the experimental flange responses could not be appropriately reproduced through the performed numerical simulations, and therefore, some of the patterns were not satisfactorily represented in the sets of positive samples used for training and validation. A first option to improve the results is to obtain a significant number and variety of experimental samples of flange responses and use them to train and validate the algorithms. Other alternatives are to use more sophisticated numerical simulation environments and to find more efficient attributes of the data.Fil: Bordón, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Martinelli, Hilda Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaElsevier Science2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/147424Bordón, Pablo; Bonomo, Nestor Eduardo; Martinelli, Hilda Patricia; Automatic detection of pipe-flange reflections in GPR data sections using supervised learning; Elsevier Science; Journal Of Applied Geophysics; 170; 103856; 11-20190926-9851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926985118304956info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jappgeo.2019.103856info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:41Zoai:ri.conicet.gov.ar:11336/147424instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:42.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
title |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
spellingShingle |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning Bordón, Pablo ANN AUTOMATIC DETECTION GPR PIPE-FLANGE SVM |
title_short |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
title_full |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
title_fullStr |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
title_full_unstemmed |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
title_sort |
Automatic detection of pipe-flange reflections in GPR data sections using supervised learning |
dc.creator.none.fl_str_mv |
Bordón, Pablo Bonomo, Nestor Eduardo Martinelli, Hilda Patricia |
author |
Bordón, Pablo |
author_facet |
Bordón, Pablo Bonomo, Nestor Eduardo Martinelli, Hilda Patricia |
author_role |
author |
author2 |
Bonomo, Nestor Eduardo Martinelli, Hilda Patricia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ANN AUTOMATIC DETECTION GPR PIPE-FLANGE SVM |
topic |
ANN AUTOMATIC DETECTION GPR PIPE-FLANGE SVM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ground Penetrating radar (GPR) is a method widely used to study the near-surface subsoil. Many GPR applications require the acquisition of large volumes of data. In these cases, the processing and analysis of the data involve considerable amounts of time and human effort, and the possibility of errors increases. Considering this, the implementation of dependable methods for the automatic detection of GPR response-patterns of the targeted structures becomes clear, because they can contribute to the efficiency and reliability of the interpretation. In this work, we present three methods for automatic detection of pipe-flange signals in constant-offset reflection-GPR images. These methods were obtained using well-known supervised machine learning techniques, and data acquired during a previous study of an extensive section of a pipeline. The first two methods are based on support vector machines (SVM), combined with the image descriptors local binary patterns (LBP) and histogram of oriented gradients (HOG), and the third, on artificial neural networks (ANN). The training and validation of these types of algorithms require large numbers of positive and negative samples. From the mentioned study, we had only 16 experimental flange-patterns. Then, in this work, they were taken as references, together with available documentation on the geometry and materials of the pipe and flanges, for building a broad database of synthetic patterns corresponding to different depths of the pipe and characteristics of the environment. These patterns constitute the set of positive samples used for training and validation. They were also used for the final test of the algorithms. The negative samples for the three stages were directly extracted from the profiles. The results obtained indicate the usefulness of the proposed methodologies to identify the flanges. The best performance corresponded to the ANN, closely followed by SVM combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates of false positive (FP) predictions for the validation and test samples of about 3%, and rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% for the test samples. Greater FN rates for the test experimental samples, in comparison to those obtained for the validation synthetic samples, were also observed for both SVM algorithms. The detection failures mainly originated in that some complex features of the experimental flange responses could not be appropriately reproduced through the performed numerical simulations, and therefore, some of the patterns were not satisfactorily represented in the sets of positive samples used for training and validation. A first option to improve the results is to obtain a significant number and variety of experimental samples of flange responses and use them to train and validate the algorithms. Other alternatives are to use more sophisticated numerical simulation environments and to find more efficient attributes of the data. Fil: Bordón, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bonomo, Nestor Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Martinelli, Hilda Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Ground Penetrating radar (GPR) is a method widely used to study the near-surface subsoil. Many GPR applications require the acquisition of large volumes of data. In these cases, the processing and analysis of the data involve considerable amounts of time and human effort, and the possibility of errors increases. Considering this, the implementation of dependable methods for the automatic detection of GPR response-patterns of the targeted structures becomes clear, because they can contribute to the efficiency and reliability of the interpretation. In this work, we present three methods for automatic detection of pipe-flange signals in constant-offset reflection-GPR images. These methods were obtained using well-known supervised machine learning techniques, and data acquired during a previous study of an extensive section of a pipeline. The first two methods are based on support vector machines (SVM), combined with the image descriptors local binary patterns (LBP) and histogram of oriented gradients (HOG), and the third, on artificial neural networks (ANN). The training and validation of these types of algorithms require large numbers of positive and negative samples. From the mentioned study, we had only 16 experimental flange-patterns. Then, in this work, they were taken as references, together with available documentation on the geometry and materials of the pipe and flanges, for building a broad database of synthetic patterns corresponding to different depths of the pipe and characteristics of the environment. These patterns constitute the set of positive samples used for training and validation. They were also used for the final test of the algorithms. The negative samples for the three stages were directly extracted from the profiles. The results obtained indicate the usefulness of the proposed methodologies to identify the flanges. The best performance corresponded to the ANN, closely followed by SVM combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates of false positive (FP) predictions for the validation and test samples of about 3%, and rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% for the test samples. Greater FN rates for the test experimental samples, in comparison to those obtained for the validation synthetic samples, were also observed for both SVM algorithms. The detection failures mainly originated in that some complex features of the experimental flange responses could not be appropriately reproduced through the performed numerical simulations, and therefore, some of the patterns were not satisfactorily represented in the sets of positive samples used for training and validation. A first option to improve the results is to obtain a significant number and variety of experimental samples of flange responses and use them to train and validate the algorithms. Other alternatives are to use more sophisticated numerical simulation environments and to find more efficient attributes of the data. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/147424 Bordón, Pablo; Bonomo, Nestor Eduardo; Martinelli, Hilda Patricia; Automatic detection of pipe-flange reflections in GPR data sections using supervised learning; Elsevier Science; Journal Of Applied Geophysics; 170; 103856; 11-2019 0926-9851 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/147424 |
identifier_str_mv |
Bordón, Pablo; Bonomo, Nestor Eduardo; Martinelli, Hilda Patricia; Automatic detection of pipe-flange reflections in GPR data sections using supervised learning; Elsevier Science; Journal Of Applied Geophysics; 170; 103856; 11-2019 0926-9851 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926985118304956 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jappgeo.2019.103856 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980663993565184 |
score |
12.993085 |