An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection

Autores
Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
ANOMALY DETECTION
INTRUSION DETECTION SYSTEMS
LABELING
SVM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/199687

id CONICETDig_6cb936d2b6a96ef4e02b695151725811
oai_identifier_str oai:ri.conicet.gov.ar:11336/199687
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detectionCatania, Carlos AdrianBromberg, FacundoGarcia Garino, Carlos GabrielANOMALY DETECTIONINTRUSION DETECTION SYSTEMSLABELINGSVMhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; ArgentinaFil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaPergamon-Elsevier Science Ltd2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199687Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel; An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 2; 2-2012; 1822-18290957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.08.068info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:31Zoai:ri.conicet.gov.ar:11336/199687instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:31.449CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
title An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
spellingShingle An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
Catania, Carlos Adrian
ANOMALY DETECTION
INTRUSION DETECTION SYSTEMS
LABELING
SVM
title_short An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
title_full An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
title_fullStr An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
title_full_unstemmed An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
title_sort An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
dc.creator.none.fl_str_mv Catania, Carlos Adrian
Bromberg, Facundo
Garcia Garino, Carlos Gabriel
author Catania, Carlos Adrian
author_facet Catania, Carlos Adrian
Bromberg, Facundo
Garcia Garino, Carlos Gabriel
author_role author
author2 Bromberg, Facundo
Garcia Garino, Carlos Gabriel
author2_role author
author
dc.subject.none.fl_str_mv ANOMALY DETECTION
INTRUSION DETECTION SYSTEMS
LABELING
SVM
topic ANOMALY DETECTION
INTRUSION DETECTION SYSTEMS
LABELING
SVM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/199687
Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel; An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 2; 2-2012; 1822-1829
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/199687
identifier_str_mv Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel; An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 2; 2-2012; 1822-1829
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.08.068
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614408069709824
score 13.070432