Regularity for degenerate evolution equations with strong absorption
- Autores
- Da Silva, Joao Vitor; Ochoa, Pablo Daniel; Silva, Analia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this manuscript, we study geometric regularity estimates for degenerate parabolic equations of p-Laplacian type (2 ≤ p < ∞) under a strong absorption condition: Δpu − ∂u/∂t = λ0uq + in ΩT := Ω × (0,T), where 0 ≤ q < 1. This model is interesting because it yields the formation of dead-core sets, i.e., regions where non-negative solutions vanish identically. We shall prove sharp and improved parabolic Cα regularity estimates along the set F0(u, ΩT) = ∂{u > 0} ∩ΩT (the free boundary), where α = p/p−1−q ≥ 1 + 1/p−1. Some weak geometric and measure theoretical properties as non-degeneracy, positive density, porosity and finite speed of propagation are proved. As an application, we prove a Liouville-type result for entire solutions. A specific analysis for Blow-up type solutions will be done as well. The results are new even for dead-core problems driven by the heat operator.
Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
DEAD-CORE PROBLEMS
LIOUVILLE TYPE RESULTS
P-LAPLACIAN TYPE OPERATORS
SHARP AND IMPROVED INTRINSIC REGULARITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92427
Ver los metadatos del registro completo
| id |
CONICETDig_f8cd9839e2f7b576e739a4697e4fb97a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92427 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Regularity for degenerate evolution equations with strong absorptionDa Silva, Joao VitorOchoa, Pablo DanielSilva, AnaliaDEAD-CORE PROBLEMSLIOUVILLE TYPE RESULTSP-LAPLACIAN TYPE OPERATORSSHARP AND IMPROVED INTRINSIC REGULARITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this manuscript, we study geometric regularity estimates for degenerate parabolic equations of p-Laplacian type (2 ≤ p < ∞) under a strong absorption condition: Δpu − ∂u/∂t = λ0uq + in ΩT := Ω × (0,T), where 0 ≤ q < 1. This model is interesting because it yields the formation of dead-core sets, i.e., regions where non-negative solutions vanish identically. We shall prove sharp and improved parabolic Cα regularity estimates along the set F0(u, ΩT) = ∂{u > 0} ∩ΩT (the free boundary), where α = p/p−1−q ≥ 1 + 1/p−1. Some weak geometric and measure theoretical properties as non-degeneracy, positive density, porosity and finite speed of propagation are proved. As an application, we prove a Liouville-type result for entire solutions. A specific analysis for Blow-up type solutions will be done as well. The results are new even for dead-core problems driven by the heat operator.Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAcademic Press Inc Elsevier Science2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92427Da Silva, Joao Vitor; Ochoa, Pablo Daniel; Silva, Analia; Regularity for degenerate evolution equations with strong absorption; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 264; 12; 6-2018; 7270-72930022-0396CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0022039618300962info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2018.02.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:09:14Zoai:ri.conicet.gov.ar:11336/92427instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:09:14.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Regularity for degenerate evolution equations with strong absorption |
| title |
Regularity for degenerate evolution equations with strong absorption |
| spellingShingle |
Regularity for degenerate evolution equations with strong absorption Da Silva, Joao Vitor DEAD-CORE PROBLEMS LIOUVILLE TYPE RESULTS P-LAPLACIAN TYPE OPERATORS SHARP AND IMPROVED INTRINSIC REGULARITY |
| title_short |
Regularity for degenerate evolution equations with strong absorption |
| title_full |
Regularity for degenerate evolution equations with strong absorption |
| title_fullStr |
Regularity for degenerate evolution equations with strong absorption |
| title_full_unstemmed |
Regularity for degenerate evolution equations with strong absorption |
| title_sort |
Regularity for degenerate evolution equations with strong absorption |
| dc.creator.none.fl_str_mv |
Da Silva, Joao Vitor Ochoa, Pablo Daniel Silva, Analia |
| author |
Da Silva, Joao Vitor |
| author_facet |
Da Silva, Joao Vitor Ochoa, Pablo Daniel Silva, Analia |
| author_role |
author |
| author2 |
Ochoa, Pablo Daniel Silva, Analia |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
DEAD-CORE PROBLEMS LIOUVILLE TYPE RESULTS P-LAPLACIAN TYPE OPERATORS SHARP AND IMPROVED INTRINSIC REGULARITY |
| topic |
DEAD-CORE PROBLEMS LIOUVILLE TYPE RESULTS P-LAPLACIAN TYPE OPERATORS SHARP AND IMPROVED INTRINSIC REGULARITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this manuscript, we study geometric regularity estimates for degenerate parabolic equations of p-Laplacian type (2 ≤ p < ∞) under a strong absorption condition: Δpu − ∂u/∂t = λ0uq + in ΩT := Ω × (0,T), where 0 ≤ q < 1. This model is interesting because it yields the formation of dead-core sets, i.e., regions where non-negative solutions vanish identically. We shall prove sharp and improved parabolic Cα regularity estimates along the set F0(u, ΩT) = ∂{u > 0} ∩ΩT (the free boundary), where α = p/p−1−q ≥ 1 + 1/p−1. Some weak geometric and measure theoretical properties as non-degeneracy, positive density, porosity and finite speed of propagation are proved. As an application, we prove a Liouville-type result for entire solutions. A specific analysis for Blow-up type solutions will be done as well. The results are new even for dead-core problems driven by the heat operator. Fil: Da Silva, Joao Vitor. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
| description |
In this manuscript, we study geometric regularity estimates for degenerate parabolic equations of p-Laplacian type (2 ≤ p < ∞) under a strong absorption condition: Δpu − ∂u/∂t = λ0uq + in ΩT := Ω × (0,T), where 0 ≤ q < 1. This model is interesting because it yields the formation of dead-core sets, i.e., regions where non-negative solutions vanish identically. We shall prove sharp and improved parabolic Cα regularity estimates along the set F0(u, ΩT) = ∂{u > 0} ∩ΩT (the free boundary), where α = p/p−1−q ≥ 1 + 1/p−1. Some weak geometric and measure theoretical properties as non-degeneracy, positive density, porosity and finite speed of propagation are proved. As an application, we prove a Liouville-type result for entire solutions. A specific analysis for Blow-up type solutions will be done as well. The results are new even for dead-core problems driven by the heat operator. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92427 Da Silva, Joao Vitor; Ochoa, Pablo Daniel; Silva, Analia; Regularity for degenerate evolution equations with strong absorption; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 264; 12; 6-2018; 7270-7293 0022-0396 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/92427 |
| identifier_str_mv |
Da Silva, Joao Vitor; Ochoa, Pablo Daniel; Silva, Analia; Regularity for degenerate evolution equations with strong absorption; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 264; 12; 6-2018; 7270-7293 0022-0396 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0022039618300962 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2018.02.013 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782468985716736 |
| score |
12.982451 |