Optimal regularity for the pseudo infinity Laplacian

Autores
Rossi, J.D.; Saez, M.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem. © EDP Sciences, SMAI 2007.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Control Optimisation Calc. Var. 2007;13(2):294-304
Materia
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Laplace equation
Problem solving
Viscosity
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Optimal control systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_12928119_v13_n2_p294_Rossi

id BDUBAFCEN_9fed3abdc4b7d8391e40fab6b3bb8324
oai_identifier_str paperaa:paper_12928119_v13_n2_p294_Rossi
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Optimal regularity for the pseudo infinity LaplacianRossi, J.D.Saez, M.Optimal regularityPseudo infinity LaplacianViscosity solutionsLaplace equationProblem solvingViscosityOptimal regularityPseudo infinity LaplacianViscosity solutionsOptimal control systemsIn this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem. © EDP Sciences, SMAI 2007.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_12928119_v13_n2_p294_RossiControl Optimisation Calc. Var. 2007;13(2):294-304reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:28Zpaperaa:paper_12928119_v13_n2_p294_RossiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:29.723Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Optimal regularity for the pseudo infinity Laplacian
title Optimal regularity for the pseudo infinity Laplacian
spellingShingle Optimal regularity for the pseudo infinity Laplacian
Rossi, J.D.
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Laplace equation
Problem solving
Viscosity
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Optimal control systems
title_short Optimal regularity for the pseudo infinity Laplacian
title_full Optimal regularity for the pseudo infinity Laplacian
title_fullStr Optimal regularity for the pseudo infinity Laplacian
title_full_unstemmed Optimal regularity for the pseudo infinity Laplacian
title_sort Optimal regularity for the pseudo infinity Laplacian
dc.creator.none.fl_str_mv Rossi, J.D.
Saez, M.
author Rossi, J.D.
author_facet Rossi, J.D.
Saez, M.
author_role author
author2 Saez, M.
author2_role author
dc.subject.none.fl_str_mv Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Laplace equation
Problem solving
Viscosity
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Optimal control systems
topic Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Laplace equation
Problem solving
Viscosity
Optimal regularity
Pseudo infinity Laplacian
Viscosity solutions
Optimal control systems
dc.description.none.fl_txt_mv In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem. © EDP Sciences, SMAI 2007.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem. © EDP Sciences, SMAI 2007.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_12928119_v13_n2_p294_Rossi
url http://hdl.handle.net/20.500.12110/paper_12928119_v13_n2_p294_Rossi
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Control Optimisation Calc. Var. 2007;13(2):294-304
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608738760491008
score 13.000565