Q-curves, Hecke characters and some Diophantine equations II
- Autores
- Pacetti, Ariel Martín; Villagra Torcomian, Lucas
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the article [25] a general procedure to study solutions of the equations x4 − dy2 = zp was presented for negative values of d. The purpose of the present article is to extend our previous results to positive values of d. On doing so, we give a description of the extension Q(√d, √ε)/Q(√d) (where ε is a fundamental unit) needed to prove the existence of a Hecke character over Q(√d) with prescribed local conditions. We also extend some “large image” results due to Ellenberg regarding images of Galois representations coming from Q-curves from imaginary to real quadratic fields.
Fil: Pacetti, Ariel Martín. Universidade de Aveiro; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Villagra Torcomian, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
DIOPHANTINE EQUATIONS
Q-CURVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226051
Ver los metadatos del registro completo
| id |
CONICETDig_f5898a2bbd830bf8556148ffc72fb059 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226051 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Q-curves, Hecke characters and some Diophantine equations IIPacetti, Ariel MartínVillagra Torcomian, LucasDIOPHANTINE EQUATIONSQ-CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the article [25] a general procedure to study solutions of the equations x4 − dy2 = zp was presented for negative values of d. The purpose of the present article is to extend our previous results to positive values of d. On doing so, we give a description of the extension Q(√d, √ε)/Q(√d) (where ε is a fundamental unit) needed to prove the existence of a Hecke character over Q(√d) with prescribed local conditions. We also extend some “large image” results due to Ellenberg regarding images of Galois representations coming from Q-curves from imaginary to real quadratic fields.Fil: Pacetti, Ariel Martín. Universidade de Aveiro; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Villagra Torcomian, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaUniversitat Autònoma de Barcelona2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226051Pacetti, Ariel Martín; Villagra Torcomian, Lucas; Q-curves, Hecke characters and some Diophantine equations II; Universitat Autònoma de Barcelona; Publicacions Matematiques; 67; 2; 7-2023; 569-5990214-14932014-4350CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6722304info:eu-repo/semantics/altIdentifier/url/https://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT6722304info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:29:45Zoai:ri.conicet.gov.ar:11336/226051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:29:46.004CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Q-curves, Hecke characters and some Diophantine equations II |
| title |
Q-curves, Hecke characters and some Diophantine equations II |
| spellingShingle |
Q-curves, Hecke characters and some Diophantine equations II Pacetti, Ariel Martín DIOPHANTINE EQUATIONS Q-CURVES |
| title_short |
Q-curves, Hecke characters and some Diophantine equations II |
| title_full |
Q-curves, Hecke characters and some Diophantine equations II |
| title_fullStr |
Q-curves, Hecke characters and some Diophantine equations II |
| title_full_unstemmed |
Q-curves, Hecke characters and some Diophantine equations II |
| title_sort |
Q-curves, Hecke characters and some Diophantine equations II |
| dc.creator.none.fl_str_mv |
Pacetti, Ariel Martín Villagra Torcomian, Lucas |
| author |
Pacetti, Ariel Martín |
| author_facet |
Pacetti, Ariel Martín Villagra Torcomian, Lucas |
| author_role |
author |
| author2 |
Villagra Torcomian, Lucas |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
DIOPHANTINE EQUATIONS Q-CURVES |
| topic |
DIOPHANTINE EQUATIONS Q-CURVES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In the article [25] a general procedure to study solutions of the equations x4 − dy2 = zp was presented for negative values of d. The purpose of the present article is to extend our previous results to positive values of d. On doing so, we give a description of the extension Q(√d, √ε)/Q(√d) (where ε is a fundamental unit) needed to prove the existence of a Hecke character over Q(√d) with prescribed local conditions. We also extend some “large image” results due to Ellenberg regarding images of Galois representations coming from Q-curves from imaginary to real quadratic fields. Fil: Pacetti, Ariel Martín. Universidade de Aveiro; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Villagra Torcomian, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
In the article [25] a general procedure to study solutions of the equations x4 − dy2 = zp was presented for negative values of d. The purpose of the present article is to extend our previous results to positive values of d. On doing so, we give a description of the extension Q(√d, √ε)/Q(√d) (where ε is a fundamental unit) needed to prove the existence of a Hecke character over Q(√d) with prescribed local conditions. We also extend some “large image” results due to Ellenberg regarding images of Galois representations coming from Q-curves from imaginary to real quadratic fields. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226051 Pacetti, Ariel Martín; Villagra Torcomian, Lucas; Q-curves, Hecke characters and some Diophantine equations II; Universitat Autònoma de Barcelona; Publicacions Matematiques; 67; 2; 7-2023; 569-599 0214-1493 2014-4350 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/226051 |
| identifier_str_mv |
Pacetti, Ariel Martín; Villagra Torcomian, Lucas; Q-curves, Hecke characters and some Diophantine equations II; Universitat Autònoma de Barcelona; Publicacions Matematiques; 67; 2; 7-2023; 569-599 0214-1493 2014-4350 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6722304 info:eu-repo/semantics/altIdentifier/url/https://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT6722304 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
| publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781885281206272 |
| score |
12.982451 |