Uniform bounds for the number of rational points on varieties over global fields
- Autores
- Paredes, Marcelo Exequiel; Sasyk, Roman
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least 4 over global fields. As an intermediate step, we generalize the bounds of Bombieri and Pila to curves over global fields and in doing so we improve the Bε factor by a log(B) factor.
Fil: Paredes, Marcelo Exequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires; Argentina - Materia
-
DETERMINANT METHOD
HEIGHTS IN GLOBAL FIELDS
NUMBER OF RATIONAL SOLUTIONS OF DIOPHANTINE EQUATIONS
VARIETIES OVER GLOBAL FIELDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/204676
Ver los metadatos del registro completo
id |
CONICETDig_c405e62bdf36399c7e6824032dd61dcd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/204676 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Uniform bounds for the number of rational points on varieties over global fieldsParedes, Marcelo ExequielSasyk, RomanDETERMINANT METHODHEIGHTS IN GLOBAL FIELDSNUMBER OF RATIONAL SOLUTIONS OF DIOPHANTINE EQUATIONSVARIETIES OVER GLOBAL FIELDShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least 4 over global fields. As an intermediate step, we generalize the bounds of Bombieri and Pila to curves over global fields and in doing so we improve the Bε factor by a log(B) factor.Fil: Paredes, Marcelo Exequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires; ArgentinaMathematical Sciences Publishers2022-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204676Paredes, Marcelo Exequiel; Sasyk, Roman; Uniform bounds for the number of rational points on varieties over global fields; Mathematical Sciences Publishers; Algebra and Number Theory; 16; 8; 11-2022; 1941-20001937-0652CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/ant/2022/16-8/ant-v16-n8-p07-s.pdfinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2101.12174info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:43Zoai:ri.conicet.gov.ar:11336/204676instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:43.412CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Uniform bounds for the number of rational points on varieties over global fields |
title |
Uniform bounds for the number of rational points on varieties over global fields |
spellingShingle |
Uniform bounds for the number of rational points on varieties over global fields Paredes, Marcelo Exequiel DETERMINANT METHOD HEIGHTS IN GLOBAL FIELDS NUMBER OF RATIONAL SOLUTIONS OF DIOPHANTINE EQUATIONS VARIETIES OVER GLOBAL FIELDS |
title_short |
Uniform bounds for the number of rational points on varieties over global fields |
title_full |
Uniform bounds for the number of rational points on varieties over global fields |
title_fullStr |
Uniform bounds for the number of rational points on varieties over global fields |
title_full_unstemmed |
Uniform bounds for the number of rational points on varieties over global fields |
title_sort |
Uniform bounds for the number of rational points on varieties over global fields |
dc.creator.none.fl_str_mv |
Paredes, Marcelo Exequiel Sasyk, Roman |
author |
Paredes, Marcelo Exequiel |
author_facet |
Paredes, Marcelo Exequiel Sasyk, Roman |
author_role |
author |
author2 |
Sasyk, Roman |
author2_role |
author |
dc.subject.none.fl_str_mv |
DETERMINANT METHOD HEIGHTS IN GLOBAL FIELDS NUMBER OF RATIONAL SOLUTIONS OF DIOPHANTINE EQUATIONS VARIETIES OVER GLOBAL FIELDS |
topic |
DETERMINANT METHOD HEIGHTS IN GLOBAL FIELDS NUMBER OF RATIONAL SOLUTIONS OF DIOPHANTINE EQUATIONS VARIETIES OVER GLOBAL FIELDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least 4 over global fields. As an intermediate step, we generalize the bounds of Bombieri and Pila to curves over global fields and in doing so we improve the Bε factor by a log(B) factor. Fil: Paredes, Marcelo Exequiel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires; Argentina |
description |
We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least 4 over global fields. As an intermediate step, we generalize the bounds of Bombieri and Pila to curves over global fields and in doing so we improve the Bε factor by a log(B) factor. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/204676 Paredes, Marcelo Exequiel; Sasyk, Roman; Uniform bounds for the number of rational points on varieties over global fields; Mathematical Sciences Publishers; Algebra and Number Theory; 16; 8; 11-2022; 1941-2000 1937-0652 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/204676 |
identifier_str_mv |
Paredes, Marcelo Exequiel; Sasyk, Roman; Uniform bounds for the number of rational points on varieties over global fields; Mathematical Sciences Publishers; Algebra and Number Theory; 16; 8; 11-2022; 1941-2000 1937-0652 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://msp.org/ant/2022/16-8/ant-v16-n8-p07-s.pdf info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2101.12174 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613769330688000 |
score |
13.070432 |