Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds
- Autores
- Andrada, Adrián Marcelo; Tolcachier, Alejandro
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (J_(a,b), g_(a,b)). We show in this article that the complex structure J_(a,b) is harmonic with respect to g_(a,b) , i.e. it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kähler, balanced, strong Kähler with torsion, Gauduchon or k-Gauduchon (k ≥ 2). Finally, we study the Bismut connection associated to (J_(a,b), g_(a,b)) and we provide formulas for the Bismut-Ricci tensor Ric^B and the Bismut-Ricci form ρ^B . We show that these tensors vanish if and only if each Sasakian factor is η-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.
Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
HERMITIAN MANIFOLD
SASAKIAN MANIFOLD
HARMONIC ALMOST COMPLX STRUCTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248370
Ver los metadatos del registro completo
id |
CONICETDig_d6515f7360cb95ea6320eb4e07b3b0b7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248370 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifoldsAndrada, Adrián MarceloTolcachier, AlejandroHERMITIAN MANIFOLDSASAKIAN MANIFOLDHARMONIC ALMOST COMPLX STRUCTUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (J_(a,b), g_(a,b)). We show in this article that the complex structure J_(a,b) is harmonic with respect to g_(a,b) , i.e. it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kähler, balanced, strong Kähler with torsion, Gauduchon or k-Gauduchon (k ≥ 2). Finally, we study the Bismut connection associated to (J_(a,b), g_(a,b)) and we provide formulas for the Bismut-Ricci tensor Ric^B and the Bismut-Ricci form ρ^B . We show that these tensors vanish if and only if each Sasakian factor is η-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2024-04-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248370Andrada, Adrián Marcelo; Tolcachier, Alejandro; Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds; Springer; The Journal Of Geometric Analysis; 34; 6; 16-4-2024; 1-331050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01620-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01620-xinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2301.09706info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:19Zoai:ri.conicet.gov.ar:11336/248370instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:20.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
title |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
spellingShingle |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds Andrada, Adrián Marcelo HERMITIAN MANIFOLD SASAKIAN MANIFOLD HARMONIC ALMOST COMPLX STRUCTURE |
title_short |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
title_full |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
title_fullStr |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
title_full_unstemmed |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
title_sort |
Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds |
dc.creator.none.fl_str_mv |
Andrada, Adrián Marcelo Tolcachier, Alejandro |
author |
Andrada, Adrián Marcelo |
author_facet |
Andrada, Adrián Marcelo Tolcachier, Alejandro |
author_role |
author |
author2 |
Tolcachier, Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
HERMITIAN MANIFOLD SASAKIAN MANIFOLD HARMONIC ALMOST COMPLX STRUCTURE |
topic |
HERMITIAN MANIFOLD SASAKIAN MANIFOLD HARMONIC ALMOST COMPLX STRUCTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (J_(a,b), g_(a,b)). We show in this article that the complex structure J_(a,b) is harmonic with respect to g_(a,b) , i.e. it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kähler, balanced, strong Kähler with torsion, Gauduchon or k-Gauduchon (k ≥ 2). Finally, we study the Bismut connection associated to (J_(a,b), g_(a,b)) and we provide formulas for the Bismut-Ricci tensor Ric^B and the Bismut-Ricci form ρ^B . We show that these tensors vanish if and only if each Sasakian factor is η-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds. Fil: Andrada, Adrián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures (J_(a,b), g_(a,b)). We show in this article that the complex structure J_(a,b) is harmonic with respect to g_(a,b) , i.e. it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kähler, balanced, strong Kähler with torsion, Gauduchon or k-Gauduchon (k ≥ 2). Finally, we study the Bismut connection associated to (J_(a,b), g_(a,b)) and we provide formulas for the Bismut-Ricci tensor Ric^B and the Bismut-Ricci form ρ^B . We show that these tensors vanish if and only if each Sasakian factor is η-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248370 Andrada, Adrián Marcelo; Tolcachier, Alejandro; Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds; Springer; The Journal Of Geometric Analysis; 34; 6; 16-4-2024; 1-33 1050-6926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248370 |
identifier_str_mv |
Andrada, Adrián Marcelo; Tolcachier, Alejandro; Harmonic complex structures and special hermitian metrics on products of Sasakian manifolds; Springer; The Journal Of Geometric Analysis; 34; 6; 16-4-2024; 1-33 1050-6926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01620-x info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01620-x info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2301.09706 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613630644977664 |
score |
13.070432 |