Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form
- Autores
- Anarella, Mateo; Salvai, Marcos Luis
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we pose the analogous more general problem by means of a control system on the manifold Gκ of all the oriented complete geodesics of the three dimensional space form of curvature κ: R3 for κ= 0 , S3 for κ= 1 and hyperbolic 3-space for κ= − 1. We obtain that the system is controllable if and only if α2≠ κ. In the spherical case with α= ± 1 , an admissible curve remains in the set of fibers of a fixed Hopf fibration of S3. We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves.
Fil: Anarella, Mateo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Katholikie Universiteit Leuven; Bélgica
Fil: Salvai, Marcos Luis. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
CONTROL SYSTEM
HELICOID
HOPF FIBRATION
JACOBI FIELD
OXFORD PROBLEM
SPACE OF ORIENTED GEODESICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214960
Ver los metadatos del registro completo
| id |
CONICETDig_bcb76bb6d5fb77f8c3f04028c0db6c88 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214960 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space FormAnarella, MateoSalvai, Marcos LuisCONTROL SYSTEMHELICOIDHOPF FIBRATIONJACOBI FIELDOXFORD PROBLEMSPACE OF ORIENTED GEODESICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we pose the analogous more general problem by means of a control system on the manifold Gκ of all the oriented complete geodesics of the three dimensional space form of curvature κ: R3 for κ= 0 , S3 for κ= 1 and hyperbolic 3-space for κ= − 1. We obtain that the system is controllable if and only if α2≠ κ. In the spherical case with α= ± 1 , an admissible curve remains in the set of fibers of a fixed Hopf fibration of S3. We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves.Fil: Anarella, Mateo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Katholikie Universiteit Leuven; BélgicaFil: Salvai, Marcos Luis. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214960Anarella, Mateo; Salvai, Marcos Luis; Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form; Springer; Acta Applicandae Mathematicae; 179; 1; 5-2022; 1-190167-8019CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10440-022-00493-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10440-022-00493-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:38:19Zoai:ri.conicet.gov.ar:11336/214960instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:38:19.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| title |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| spellingShingle |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form Anarella, Mateo CONTROL SYSTEM HELICOID HOPF FIBRATION JACOBI FIELD OXFORD PROBLEM SPACE OF ORIENTED GEODESICS |
| title_short |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| title_full |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| title_fullStr |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| title_full_unstemmed |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| title_sort |
Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form |
| dc.creator.none.fl_str_mv |
Anarella, Mateo Salvai, Marcos Luis |
| author |
Anarella, Mateo |
| author_facet |
Anarella, Mateo Salvai, Marcos Luis |
| author_role |
author |
| author2 |
Salvai, Marcos Luis |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CONTROL SYSTEM HELICOID HOPF FIBRATION JACOBI FIELD OXFORD PROBLEM SPACE OF ORIENTED GEODESICS |
| topic |
CONTROL SYSTEM HELICOID HOPF FIBRATION JACOBI FIELD OXFORD PROBLEM SPACE OF ORIENTED GEODESICS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we pose the analogous more general problem by means of a control system on the manifold Gκ of all the oriented complete geodesics of the three dimensional space form of curvature κ: R3 for κ= 0 , S3 for κ= 1 and hyperbolic 3-space for κ= − 1. We obtain that the system is controllable if and only if α2≠ κ. In the spherical case with α= ± 1 , an admissible curve remains in the set of fibers of a fixed Hopf fibration of S3. We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves. Fil: Anarella, Mateo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Katholikie Universiteit Leuven; Bélgica Fil: Salvai, Marcos Luis. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
Let G be the manifold of all (unparametrized) oriented lines of R3. We study the controllability of the control system in G given by the condition that a curve in G describes at each instant, at the infinitesimal level, an helicoid with prescribed angular speed α. Actually, we pose the analogous more general problem by means of a control system on the manifold Gκ of all the oriented complete geodesics of the three dimensional space form of curvature κ: R3 for κ= 0 , S3 for κ= 1 and hyperbolic 3-space for κ= − 1. We obtain that the system is controllable if and only if α2≠ κ. In the spherical case with α= ± 1 , an admissible curve remains in the set of fibers of a fixed Hopf fibration of S3. We also address and solve a sort of Kendall’s (aka Oxford) problem in this setting: Finding the minimum number of switches of piecewise continuous curves joining two arbitrary oriented lines, with pieces in some distinguished families of admissible curves. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214960 Anarella, Mateo; Salvai, Marcos Luis; Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form; Springer; Acta Applicandae Mathematicae; 179; 1; 5-2022; 1-19 0167-8019 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/214960 |
| identifier_str_mv |
Anarella, Mateo; Salvai, Marcos Luis; Infinitesimally Helicoidal Motions with Fixed Pitch of Oriented Geodesics of a Space Form; Springer; Acta Applicandae Mathematicae; 179; 1; 5-2022; 1-19 0167-8019 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10440-022-00493-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10440-022-00493-y |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335279189262336 |
| score |
12.952241 |