Algebras of commuting differential operators for integral kernels of Airy type
- Autores
- Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Differential operators commuting with integral operators were discovered in the work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the Fredholm determinants of integral operators arising in random matrix theory. Very recently, it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions give rise to commuting integral and differential operators [6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a classification of the the rational symmetric Darboux transformations of the Airy function in terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with each of the integral operators in question. We leverage the general theory of [8] to obtain explicit formulas for the two differential operators of lowest orders that commute with each of the level one and two integral operators obtained in the Darboux process. Moreover, we prove that each pair of differential operators commute with each other. The commuting operators in the level one case are shown to satisfy an algebraic relation defining an elliptic curve.
Fil: Casper, W. Riley. California State University, Fullerton; Estados Unidos
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos
Fil: Yakimov, Milen. Northeastern University; Estados Unidos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Mathematical physics
Rings and algebras
Spectral theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172708
Ver los metadatos del registro completo
id |
CONICETDig_f37ce00b8826358dd3c8acd704f6480c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172708 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebras of commuting differential operators for integral kernels of Airy typeCasper, W. RileyGrünbaum, Francisco AlbertoYakimov, MilenZurrián, Ignacio NahuelMathematical physicsRings and algebrasSpectral theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Differential operators commuting with integral operators were discovered in the work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the Fredholm determinants of integral operators arising in random matrix theory. Very recently, it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions give rise to commuting integral and differential operators [6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a classification of the the rational symmetric Darboux transformations of the Airy function in terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with each of the integral operators in question. We leverage the general theory of [8] to obtain explicit formulas for the two differential operators of lowest orders that commute with each of the level one and two integral operators obtained in the Darboux process. Moreover, we prove that each pair of differential operators commute with each other. The commuting operators in the level one case are shown to satisfy an algebraic relation defining an elliptic curve.Fil: Casper, W. Riley. California State University, Fullerton; Estados UnidosFil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados UnidosFil: Yakimov, Milen. Northeastern University; Estados UnidosFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaCornell University2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172708Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Algebras of commuting differential operators for integral kernels of Airy type; Cornell University; arXiv; 12-2021; 1-192331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2112.11639info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.11639info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:10Zoai:ri.conicet.gov.ar:11336/172708instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:10.772CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebras of commuting differential operators for integral kernels of Airy type |
title |
Algebras of commuting differential operators for integral kernels of Airy type |
spellingShingle |
Algebras of commuting differential operators for integral kernels of Airy type Casper, W. Riley Mathematical physics Rings and algebras Spectral theory |
title_short |
Algebras of commuting differential operators for integral kernels of Airy type |
title_full |
Algebras of commuting differential operators for integral kernels of Airy type |
title_fullStr |
Algebras of commuting differential operators for integral kernels of Airy type |
title_full_unstemmed |
Algebras of commuting differential operators for integral kernels of Airy type |
title_sort |
Algebras of commuting differential operators for integral kernels of Airy type |
dc.creator.none.fl_str_mv |
Casper, W. Riley Grünbaum, Francisco Alberto Yakimov, Milen Zurrián, Ignacio Nahuel |
author |
Casper, W. Riley |
author_facet |
Casper, W. Riley Grünbaum, Francisco Alberto Yakimov, Milen Zurrián, Ignacio Nahuel |
author_role |
author |
author2 |
Grünbaum, Francisco Alberto Yakimov, Milen Zurrián, Ignacio Nahuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Mathematical physics Rings and algebras Spectral theory |
topic |
Mathematical physics Rings and algebras Spectral theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Differential operators commuting with integral operators were discovered in the work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the Fredholm determinants of integral operators arising in random matrix theory. Very recently, it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions give rise to commuting integral and differential operators [6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a classification of the the rational symmetric Darboux transformations of the Airy function in terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with each of the integral operators in question. We leverage the general theory of [8] to obtain explicit formulas for the two differential operators of lowest orders that commute with each of the level one and two integral operators obtained in the Darboux process. Moreover, we prove that each pair of differential operators commute with each other. The commuting operators in the level one case are shown to satisfy an algebraic relation defining an elliptic curve. Fil: Casper, W. Riley. California State University, Fullerton; Estados Unidos Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos Fil: Yakimov, Milen. Northeastern University; Estados Unidos Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Differential operators commuting with integral operators were discovered in the work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the Fredholm determinants of integral operators arising in random matrix theory. Very recently, it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions give rise to commuting integral and differential operators [6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a classification of the the rational symmetric Darboux transformations of the Airy function in terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with each of the integral operators in question. We leverage the general theory of [8] to obtain explicit formulas for the two differential operators of lowest orders that commute with each of the level one and two integral operators obtained in the Darboux process. Moreover, we prove that each pair of differential operators commute with each other. The commuting operators in the level one case are shown to satisfy an algebraic relation defining an elliptic curve. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172708 Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Algebras of commuting differential operators for integral kernels of Airy type; Cornell University; arXiv; 12-2021; 1-19 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172708 |
identifier_str_mv |
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Algebras of commuting differential operators for integral kernels of Airy type; Cornell University; arXiv; 12-2021; 1-19 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2112.11639 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2112.11639 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613987957735424 |
score |
13.070432 |