On a spectral sequence for the cohomology of a nilpotent Lie algebra
- Autores
- del Barco, Viviana Jorgelina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Lie Algebra Cohomology
Nilpotent Lie Algebras
Spectral Sequences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40071
Ver los metadatos del registro completo
id |
CONICETDig_94ad115e1a2a70fd4becec1a3f8e33fc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40071 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On a spectral sequence for the cohomology of a nilpotent Lie algebradel Barco, Viviana JorgelinaLie Algebra CohomologyNilpotent Lie AlgebrasSpectral Sequenceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorld Scientific2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40071del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 14500780219-49881793-6829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498814500789info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498814500789info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:23Zoai:ri.conicet.gov.ar:11336/40071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:23.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
title |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
spellingShingle |
On a spectral sequence for the cohomology of a nilpotent Lie algebra del Barco, Viviana Jorgelina Lie Algebra Cohomology Nilpotent Lie Algebras Spectral Sequences |
title_short |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
title_full |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
title_fullStr |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
title_full_unstemmed |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
title_sort |
On a spectral sequence for the cohomology of a nilpotent Lie algebra |
dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina |
author |
del Barco, Viviana Jorgelina |
author_facet |
del Barco, Viviana Jorgelina |
author_role |
author |
dc.subject.none.fl_str_mv |
Lie Algebra Cohomology Nilpotent Lie Algebras Spectral Sequences |
topic |
Lie Algebra Cohomology Nilpotent Lie Algebras Spectral Sequences |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six. Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40071 del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 1450078 0219-4988 1793-6829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40071 |
identifier_str_mv |
del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 1450078 0219-4988 1793-6829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498814500789 info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498814500789 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613992476049408 |
score |
13.070432 |