On a spectral sequence for the cohomology of a nilpotent Lie algebra

Autores
del Barco, Viviana Jorgelina
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Lie Algebra Cohomology
Nilpotent Lie Algebras
Spectral Sequences
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/40071

id CONICETDig_94ad115e1a2a70fd4becec1a3f8e33fc
oai_identifier_str oai:ri.conicet.gov.ar:11336/40071
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On a spectral sequence for the cohomology of a nilpotent Lie algebradel Barco, Viviana JorgelinaLie Algebra CohomologyNilpotent Lie AlgebrasSpectral Sequenceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorld Scientific2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40071del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 14500780219-49881793-6829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498814500789info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498814500789info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:23Zoai:ri.conicet.gov.ar:11336/40071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:23.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On a spectral sequence for the cohomology of a nilpotent Lie algebra
title On a spectral sequence for the cohomology of a nilpotent Lie algebra
spellingShingle On a spectral sequence for the cohomology of a nilpotent Lie algebra
del Barco, Viviana Jorgelina
Lie Algebra Cohomology
Nilpotent Lie Algebras
Spectral Sequences
title_short On a spectral sequence for the cohomology of a nilpotent Lie algebra
title_full On a spectral sequence for the cohomology of a nilpotent Lie algebra
title_fullStr On a spectral sequence for the cohomology of a nilpotent Lie algebra
title_full_unstemmed On a spectral sequence for the cohomology of a nilpotent Lie algebra
title_sort On a spectral sequence for the cohomology of a nilpotent Lie algebra
dc.creator.none.fl_str_mv del Barco, Viviana Jorgelina
author del Barco, Viviana Jorgelina
author_facet del Barco, Viviana Jorgelina
author_role author
dc.subject.none.fl_str_mv Lie Algebra Cohomology
Nilpotent Lie Algebras
Spectral Sequences
topic Lie Algebra Cohomology
Nilpotent Lie Algebras
Spectral Sequences
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.
Fil: del Barco, Viviana Jorgelina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Given a nilpotent Lie algebra we construct a spectral sequence which is derived from a filtration of its Chevalley-Eilenberg differential complex and converges to the Lie algebra cohomology of. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim-1 and dim as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/40071
del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 1450078
0219-4988
1793-6829
CONICET Digital
CONICET
url http://hdl.handle.net/11336/40071
identifier_str_mv del Barco, Viviana Jorgelina; On a spectral sequence for the cohomology of a nilpotent Lie algebra; World Scientific; Journal Of Algebra And Its Applications; 14; 1; 3-2015; 1-17; 1450078
0219-4988
1793-6829
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498814500789
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498814500789
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613992476049408
score 13.070432