Reflective prolate-spheroidal operators and the adelic grassmannian

Autores
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s
Fil: Casper, W. Riley. State University of Louisiana; Estados Unidos
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos
Fil: Yakimov, Milen. State University of Louisiana; Estados Unidos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Mathematical physics
Algebraic geometry
Spectral theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/145050

id CONICETDig_259c693c6cd5b2552598e89738d40ffd
oai_identifier_str oai:ri.conicet.gov.ar:11336/145050
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reflective prolate-spheroidal operators and the adelic grassmannianCasper, W. RileyGrünbaum, Francisco AlbertoYakimov, MilenZurrián, Ignacio NahuelMathematical physicsAlgebraic geometrySpectral theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970sFil: Casper, W. Riley. State University of Louisiana; Estados UnidosFil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados UnidosFil: Yakimov, Milen. State University of Louisiana; Estados UnidosFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaCornell University2020-03-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145050Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the adelic grassmannian; Cornell University; arXiv; 27-3-2020; 1-332331-84222331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/arxiv.org/abs/2003.11616info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:36Zoai:ri.conicet.gov.ar:11336/145050instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:36.909CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reflective prolate-spheroidal operators and the adelic grassmannian
title Reflective prolate-spheroidal operators and the adelic grassmannian
spellingShingle Reflective prolate-spheroidal operators and the adelic grassmannian
Casper, W. Riley
Mathematical physics
Algebraic geometry
Spectral theory
title_short Reflective prolate-spheroidal operators and the adelic grassmannian
title_full Reflective prolate-spheroidal operators and the adelic grassmannian
title_fullStr Reflective prolate-spheroidal operators and the adelic grassmannian
title_full_unstemmed Reflective prolate-spheroidal operators and the adelic grassmannian
title_sort Reflective prolate-spheroidal operators and the adelic grassmannian
dc.creator.none.fl_str_mv Casper, W. Riley
Grünbaum, Francisco Alberto
Yakimov, Milen
Zurrián, Ignacio Nahuel
author Casper, W. Riley
author_facet Casper, W. Riley
Grünbaum, Francisco Alberto
Yakimov, Milen
Zurrián, Ignacio Nahuel
author_role author
author2 Grünbaum, Francisco Alberto
Yakimov, Milen
Zurrián, Ignacio Nahuel
author2_role author
author
author
dc.subject.none.fl_str_mv Mathematical physics
Algebraic geometry
Spectral theory
topic Mathematical physics
Algebraic geometry
Spectral theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s
Fil: Casper, W. Riley. State University of Louisiana; Estados Unidos
Fil: Grünbaum, Francisco Alberto. University of California at Berkeley; Estados Unidos
Fil: Yakimov, Milen. State University of Louisiana; Estados Unidos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Beginning with the work of Landau, Pollak and Slepian in the 1960s on time-band limiting, commuting pairs of integral and differential operators have played a key role in signal processing, random matrix theory and integrable systems. Previously, such pairs were constructed by ad hoc methods, which worked because a commuting operator of low order could be found by a direct calculation. We describe a general approach to these problems that proves that every point W of Wilson's infinite dimensional adelic Grassmannian Grad gives rise to an integral operator TW, acting on L2(Γ) for a contour Γ⊂C, which reflects a differential operator R(z,∂z) in the sense that R(−z,−∂z)∘TW=TW∘R(w,∂w) on a dense subset of L2(Γ). By using analytic methods and methods from integrable systems, we show that the reflected differential operator can be constructed from the Fourier algebra of the associated bispectral function ψW(x,z). The size of this algebra with respect to a bifiltration is in turn determined using algebro-geometric methods. Intrinsic properties of four involutions of the adelic Grassmannian naturally lead us to consider the reflecting property in place of plain commutativity. Furthermore, we prove that the time-band limited operators of the generalized Laplace transforms with kernels given by all rank one bispectral functions ψW(x,−z) reflect a differential operator. A 90∘ rotation argument is used to prove that the time-band limited operators of the generalized Fourier transforms with kernels ψW(x,iz) admit a commuting differential operator. These methods produce vast collections of integral operators with prolate-spheroidal properties, associated to the wave functions of all rational solutions of the KP hierarchy vanishing at infinity, introduced by Krichever in the late 1970s
publishDate 2020
dc.date.none.fl_str_mv 2020-03-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/145050
Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the adelic grassmannian; Cornell University; arXiv; 27-3-2020; 1-33
2331-8422
2331-8422
CONICET Digital
CONICET
url http://hdl.handle.net/11336/145050
identifier_str_mv Casper, W. Riley; Grünbaum, Francisco Alberto; Yakimov, Milen; Zurrián, Ignacio Nahuel; Reflective prolate-spheroidal operators and the adelic grassmannian; Cornell University; arXiv; 27-3-2020; 1-33
2331-8422
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/arxiv.org/abs/2003.11616
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cornell University
publisher.none.fl_str_mv Cornell University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614302763319296
score 13.070432