The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras
- Autores
- Brega, Alfredo Oscar; Cagliero, Leandro Roberto; Chaves Ochoa, Augusto Enrique
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We apply the Nash–Moser theorem for exact sequences of R. Hamilton to the context of deformations of Lie algebras and we discuss some aspects of the scope of this theorem in connection with the polynomial ideal associated to the variety of nilpotent Lie algebras. This allows us to introduce the space Hk-nil 2(g,g), and certain subspaces of it, that provide fine information about the deformations of g in the variety of k-step nilpotent Lie algebras. Then we focus on degenerations and rigidity in the variety of k-step nilpotent Lie algebras of dimension n with n≤7 and, in particular, we obtain rigid Lie algebras and rigid curves in the variety of 3-step nilpotent Lie algebras of dimension 7. We also recover some known results and point out a possible error in a published article related to this subject.
Fil: Brega, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Chaves Ochoa, Augusto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
deformations and rigidity Lie algebras
Cohomology of Lie algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59986
Ver los metadatos del registro completo
id |
CONICETDig_f2bfceafa6c3d39e0c80e76c50f72ef7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59986 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebrasBrega, Alfredo OscarCagliero, Leandro RobertoChaves Ochoa, Augusto Enriquedeformations and rigidity Lie algebrasCohomology of Lie algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We apply the Nash–Moser theorem for exact sequences of R. Hamilton to the context of deformations of Lie algebras and we discuss some aspects of the scope of this theorem in connection with the polynomial ideal associated to the variety of nilpotent Lie algebras. This allows us to introduce the space Hk-nil 2(g,g), and certain subspaces of it, that provide fine information about the deformations of g in the variety of k-step nilpotent Lie algebras. Then we focus on degenerations and rigidity in the variety of k-step nilpotent Lie algebras of dimension n with n≤7 and, in particular, we obtain rigid Lie algebras and rigid curves in the variety of 3-step nilpotent Lie algebras of dimension 7. We also recover some known results and point out a possible error in a published article related to this subject.Fil: Brega, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Chaves Ochoa, Augusto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier Science2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59986Brega, Alfredo Oscar; Cagliero, Leandro Roberto; Chaves Ochoa, Augusto Enrique; The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 221; 9; 9-2017; 2250-22650022-4049CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2016.12.007info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404916302079info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:43Zoai:ri.conicet.gov.ar:11336/59986instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:43.757CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
title |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
spellingShingle |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras Brega, Alfredo Oscar deformations and rigidity Lie algebras Cohomology of Lie algebras |
title_short |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
title_full |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
title_fullStr |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
title_full_unstemmed |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
title_sort |
The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras |
dc.creator.none.fl_str_mv |
Brega, Alfredo Oscar Cagliero, Leandro Roberto Chaves Ochoa, Augusto Enrique |
author |
Brega, Alfredo Oscar |
author_facet |
Brega, Alfredo Oscar Cagliero, Leandro Roberto Chaves Ochoa, Augusto Enrique |
author_role |
author |
author2 |
Cagliero, Leandro Roberto Chaves Ochoa, Augusto Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
deformations and rigidity Lie algebras Cohomology of Lie algebras |
topic |
deformations and rigidity Lie algebras Cohomology of Lie algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We apply the Nash–Moser theorem for exact sequences of R. Hamilton to the context of deformations of Lie algebras and we discuss some aspects of the scope of this theorem in connection with the polynomial ideal associated to the variety of nilpotent Lie algebras. This allows us to introduce the space Hk-nil 2(g,g), and certain subspaces of it, that provide fine information about the deformations of g in the variety of k-step nilpotent Lie algebras. Then we focus on degenerations and rigidity in the variety of k-step nilpotent Lie algebras of dimension n with n≤7 and, in particular, we obtain rigid Lie algebras and rigid curves in the variety of 3-step nilpotent Lie algebras of dimension 7. We also recover some known results and point out a possible error in a published article related to this subject. Fil: Brega, Alfredo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Chaves Ochoa, Augusto Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We apply the Nash–Moser theorem for exact sequences of R. Hamilton to the context of deformations of Lie algebras and we discuss some aspects of the scope of this theorem in connection with the polynomial ideal associated to the variety of nilpotent Lie algebras. This allows us to introduce the space Hk-nil 2(g,g), and certain subspaces of it, that provide fine information about the deformations of g in the variety of k-step nilpotent Lie algebras. Then we focus on degenerations and rigidity in the variety of k-step nilpotent Lie algebras of dimension n with n≤7 and, in particular, we obtain rigid Lie algebras and rigid curves in the variety of 3-step nilpotent Lie algebras of dimension 7. We also recover some known results and point out a possible error in a published article related to this subject. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59986 Brega, Alfredo Oscar; Cagliero, Leandro Roberto; Chaves Ochoa, Augusto Enrique; The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 221; 9; 9-2017; 2250-2265 0022-4049 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59986 |
identifier_str_mv |
Brega, Alfredo Oscar; Cagliero, Leandro Roberto; Chaves Ochoa, Augusto Enrique; The Nash–Moser theorem of Hamilton and rigidity of finite dimensional nilpotent Lie algebras; Elsevier Science; Journal Of Pure And Applied Algebra; 221; 9; 9-2017; 2250-2265 0022-4049 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpaa.2016.12.007 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022404916302079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268876823330816 |
score |
13.13397 |